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Exploring Data: The Beast of Bias 
Sources of Bias   
A	bit	of	revision.	We’ve	seen	that	having	collected	data	we	usually	fit	a	model	that	represents	the	hypothesis	that	we	
want	to	test.	This	model	is	usually	a	linear	model,	which	takes	the	form	of:	

outcome! = 𝑏𝑏$𝑋𝑋$! + 𝑏𝑏'𝑋𝑋'! ⋯ 𝑏𝑏)𝑋𝑋)! + error!	 Eq.	1	

Therefore,	we	predict	an	outcome	variable,	from	one	or	more	predictor	variables	(the	Xs)	and	parameters	(the	bs	in	the	
equation)	that	tell	us	something	about	the	relationship	between	the	predictor	and	the	outcome	variable.	Finally,	the	
model	will	not	predict	the	outcome	perfectly	so	for	each	observation	there	will	be	some	error.	

When	we	fit	a	model,	we	often	estimate	the	parameters	(b)	using	the	method	of	least	squares	(known	as	ordinary	least	
squares	or	OLS).	We’re	not	interested	in	our	sample	so	much	as	a	general	population,	so	we	use	the	sample	data	to	
estimate	the	value	of	the	parameters	in	the	population	(that’s	why	we	call	them	estimates	rather	than	values).	When	
we	estimate	a	parameter	we	also	compute	an	estimate	of	how	well	 it	represents	the	population	such	as	a	standard	
error	or	confidence	 interval.	We	can	test	hypotheses	about	 these	parameters	by	computing	test	statistics	and	their	
associated	 probabilities	 (p-values).	 Therefore,	 when	 we	 think	 about	 bias,	 we	 need	 to	 think	 about	 it	 within	 three	
contexts:		

1. Things	that	bias	the	parameter	estimates.	

2. Things	that	bias	standard	errors	and	confidence	intervals.	

3. Things	that	bias	test	statistics	and	p-values.	

These	 situations	 are	 related	 because	 confidence	 intervals	 and	 test	 statistics	 both	 rely	 on	 the	 standard	 error.	 It	 is	
important	that	we	identify	and	eliminate	anything	that	might	affect	the	information	that	we	use	to	draw	conclusions	
about	the	world,	so	we	explore	data	to	look	for	bias.	

Outliers 
An	outlier	is	a	score	very	different	from	the	rest	of	the	data.	When	I	published	my	first	book	(Field,	2000),	I	obsessively	
checked	the	book’s	ratings	on	Amazon.co.uk.	Customer	ratings	can	range	from	1	to	5	stars,	where	5	is	the	best.	Back	in	
2002,	my	first	book	had	seven	ratings	(in	the	order	given)	of	2,	5,	4,	5,	5,	5,	and	5.	All	but	one	of	these	ratings	are	fairly	
similar	(mainly	5	and	4)	but	the	first	rating	was	quite	different	from	the	rest—it	was	a	rating	of	2	(a	mean	and	horrible	
rating).	The	mean	of	these	scores	was	4.43.	The	only	score	that	wasn’t	a	4	or	5	was	the	first	rating	of	2.	This	score	is	an	
example	of	an	outlier—a	weird	and	unusual	person	(sorry,	 I	mean	score)	 that	deviates	 from	the	rest	of	humanity	 (I	
mean,	data	set).	The	mean	of	the	scores	when	the	outlier	is	not	included	is	4.83	(it	increases	by	0.4).	This	example	shows	
how	a	single	score,	from	some	mean-spirited	badger	turd,	can	bias	a	parameter	such	as	the	mean:	the	first	rating	of	2	
drags	the	average	down.	Based	on	this	biased	estimate	new	customers	might	erroneously	conclude	that	my	book	is	
worse	than	the	population	actually	thinks	it	is.	

Spotting outliers with graphs 
A	biologist	was	worried	about	the	potential	health	effects	of	music	festivals.	So,	one	year	she	went	to	the	Download	
Music	Festival	(http://www.downloadfestival.co.uk)	and	measured	the	hygiene	of	810	concert	goers	over	the	three	days	
of	the	festival.	In	theory	each	person	was	measured	on	each	day	but	because	it	was	difficult	to	track	people	down,	there	
were	some	missing	data	on	days	2	and	3.	Hygiene	was	measured	using	a	standardised	technique	(don’t	worry	it	wasn’t	
licking	the	person’s	armpit)	that	results	in	a	score	ranging	between	0	(you	smell	like	a	rotting	corpse	that’s	hiding	up	a	
skunk’s	arse)	and	5	(you	smell	of	sweet	roses	on	a	fresh	spring	day).	Now	I	know	from	bitter	experience	that	sanitation	
is	not	always	great	at	these	places	(Reading	festival	seems	particularly	bad	…)	and	so	this	researcher	predicted	that	
personal	 hygiene	 would	 go	 down	 dramatically	 over	 the	 three	 days	 of	 the	 festival.	 The	 data	 file	 is	 called	
DownloadFestival.sav.	
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To	plot	a	histogram	we	use	Chart	Builder	(see	last	week’s	handout)	which	is	accessed	through	the	 	 	
menu.	Select	Histogram	in	the	list	labelled	Choose	from	to	bring	up	the	gallery	shown	in	Figure	1.	This	gallery	has	four	
icons	representing	different	types	of	histogram,	and	you	should	select	the	appropriate	one	either	by	double-clicking	on	
it,	or	by	dragging	it	onto	the	canvas	in	the	Chart	Builder:	

® Simple	histogram:	Use	this	option	when	you	just	want	to	see	the	frequencies	of	scores	for	a	single	variable	(i.e.	
most	of	the	time).	

® Stacked	 histogram	 and	Population	 Pyramid:	 If	 you	 had	 a	 grouping	 variable	 (e.g.	whether	men	 or	women	
attended	the	festival)	you	could	produce	a	histogram	in	which	each	bar	is	split	by	group	(stacked	histogram)	or	
the	outcome	(in	this	case	hygiene)	on	the	vertical	axis	and	each	group	(i.e.	men	vs.	women)	on	the	horizontal	
(i.e.,	the	histograms	for	men	and	women	appear	back	to	back	on	the	graph).	

® Frequency	Polygon:	This	option	displays	the	same	data	as	the	simple	histogram	except	that	it	uses	a	line	instead	
of	bars	to	show	the	frequency,	and	the	area	below	the	line	is	shaded.	

	
Figure	1:	The	histogram	gallery	

We	are	going	to	do	a	simple	histogram	so	double-click	on	the	icon	for	a	simple	histogram	(Figure	1).	The	Chart	Builder	
dialog	box	will	now	show	a	preview	of	the	graph	in	the	canvas	area.	At	the	moment	it’s	not	very	exciting	because	we	
haven’t	told	SPSS	which	variables	we	want	to	plot.	Note	that	the	variables	in	the	data	editor	are	listed	on	the	left-hand	
side	of	the	Chart	Builder,	and	any	of	these	variables	can	be	dragged	into	any	of	the	drop	zones	(spaces	surrounded	by	
blue	dotted	lines).	

A	histogram	plots	a	single	variable	(x-axis)	against	the	frequency	of	scores	(y-axis),	so	all	we	need	to	do	is	select	a	variable	
from	the	list	and	drag	it	into	 .	Let’s	do	this	for	the	hygiene	scores	on	day	1	of	the	festival.	Click	on	this	
variable	in	the	list	and	drag	it	to	 	as	shown	in	Figure	2;	you	will	now	find	the	histogram	previewed	on	the	
canvas.	To	draw	the	histogram	click	on	 .	

The	resulting	histogram	is	shown	in	Figure	3	and	the	first	thing	that	should	leap	out	at	you	is	that	there	appears	to	be	
one	case	that	 is	very	different	to	the	others.	All	of	the	scores	appear	to	be	squished	up	one	end	of	the	distribution	
because	they	are	all	less	than	5	(yielding	what	is	known	as	a	leptokurtic	distribution!)	except	for	one,	which	has	a	value	
of	20!	This	score	is	an	outlier.	What’s	odd	about	this	outlier	is	that	it	has	a	score	of	20,	which	is	above	the	top	of	our	
scale	(remember	our	hygiene	scale	ranged	only	from	0-5)	and	so	 it	must	be	a	mistake	(or	the	person	had	obsessive	
compulsive	disorder	and	had	washed	themselves	into	a	state	of	extreme	cleanliness).	However,	with	810	cases,	how	on	
earth	do	we	 find	out	which	 case	 it	was?	You	 could	 just	 look	 through	 the	data,	 but	 that	would	 certainly	 give	 you	a	
headache	and	so	instead	we	can	use	a	boxplot.	

You	 encountered	 boxplots	 or	 box-whisker	 diagrams	 last	 year.	 At	 the	 centre	 of	 the	 plot	 is	 the	median,	 which	 is	
surrounded	by	a	box	the	top	and	bottom	of	which	are	the	limits	within	which	the	middle	50%	of	observations	fall	(the	
interquartile	range).	Sticking	out	of	the	top	and	bottom	of	the	box	are	two	whiskers	which	extend	to	the	most	and	least	
extreme	scores	respectively.	Outliers	as	shown	as	dots	or	stars	(see	my	book	for	details).	

	

Simple
 Histogram    

Stacked 
 Histogram    

 Frequency   
Polygon  

 Population   
Pyramid



	

©	Prof.	Andy	Field,	2016	 www.discoveringstatistics.com	 Page	3	

	

	
Figure	2:	Plotting	a	histogram	

	
Figure	3:	Histogram	of	the	Day	1	Download	Festival	hygiene	scores	

Select	the	 	 	menu,	then	select	Boxplot	in	the	list	labelled	Choose	from	to	bring	up	the	gallery	shown	
in	Figure	4.	There	are	three	types	of	boxplot	you	can	choose:	

® Simple	boxplot:	Use	this	option	when	you	want	to	plot	a	boxplot	of	a	single	variable,	but	you	want	different	
boxplots	 produced	 for	 different	 categories	 in	 the	data	 (for	 these	hygiene	data	we	 could	produce	 separate	
boxplots	for	men	and	women).	

® Clustered	boxplot:	This	option	is	the	same	as	the	simple	boxplot	except	that	you	can	select	a	second	categorical	
variable	on	which	to	split	 the	data.	Boxplots	 for	 this	second	variable	are	produced	 in	different	colours.	For	
example,	we	might	have	measured	whether	our	festival-goer	was	staying	in	a	tent	or	a	nearby	hotel	during	the	
festival.	We	could	produce	boxplots	not	just	for	men	and	women,	but	within	men	and	women	we	could	have	
different-coloured	boxplots	for	those	who	stayed	in	tents	and	those	who	stayed	in	hotels.	

Click on the Hygiene
Day 1 variable and drag    

it to this Drop Zone
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® 1-D	Boxplot:	Use	this	option	when	you	just	want	to	see	a	boxplot	for	a	single	variable.	(This	differs	from	the	
simple	boxplot	only	in	that	no	categorical	variable	is	selected	for	the	x-axis.)	

	 	
Figure	4:	The	boxplot	gallery	

To	make	our	boxplot	of	 the	day	1	hygiene	scores,	double-click	on	the	simple	boxplot	 icon	 (Figure	4),	 then	 from	the	
variable	list	select	the	hygiene	day	1	score	variable	and	drag	it	into	 .	The	dialog	should	now	look	like	Figure	
5—	click	on	 	to	produce	the	graph.	

	
Figure	5:	Boxplot	for	the	download	festival	data	

The	outlier	that	we	detected	in	the	histogram	has	shown	up	as	an	extreme	score	(*)	on	the	boxplot.	SPSS	helpfully	tells	
us	the	number	of	the	case	(611)	that’s	producing	this	outlier.	If	we	go	to	the	data	editor	(data	view),	we	can	locate	this	
case	quickly	by	clicking	on	 	and	typing	611	in	the	dialog	box	that	appears.	That	takes	us	straight	to	case	611.	Looking	
at	this	case	reveals	a	score	of	20.02,	which	is	probably	a	mistyping	of	2.02.	We’d	have	to	go	back	to	the	raw	data	and	
check.	We’ll	assume	we’ve	checked	the	raw	data	and	this	score	should	be	2.02,	so	replace	the	value	20.02	with	the	
value	2.02	before	we	continue	this	example	

	

SELF	TEST:	Now	we	have	removed	the	outlier	in	the	data,	re-plot	the	histogram	and	boxplot.	

	

Simple
 Boxplot       

Clustered     
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Figure	6:	Histogram	(left)	and	boxplot	(right)	of	hygiene	scores	on	day	1	of	the	Download	Festival		

Figure	6	shows	the	histogram	and	boxplot	for	the	data	after	the	extreme	case	has	been	corrected.	The	distribution	is	
nicely	 symmetrical	 and	doesn’t	 seem	 too	pointy	 or	 flat.	Neither	 plot	 indicates	 any	 particularly	 extreme	 scores:	 the	
boxplot	suggests	that	case	574	is	a	mild	outlier,	but	the	histogram	doesn’t	seem	to	show	any	cases	as	being	particularly	
out	of	the	ordinary	

Assumptions 
Most	of	our	potential	sources	of	bias	come	in	the	form	of	‘violations	of	assumptions’.	An	assumption	is	a	condition	that	
ensures	that	what	you’re	attempting	to	do	works.	For	example,	when	we	assess	a	model	using	a	test	statistic,	we	have	
usually	made	some	assumptions,	and	if	these	assumptions	are	true	then	we	know	that	we	can	take	the	test	statistic	
(and,	therefore,	p-value)	associated	with	a	model	at	face	value	and	interpret	it	accordingly.	Conversely,	if	any	of	the	
assumptions	are	not	true	(usually	referred	to	as	a	violation)	then	the	test	statistic	and	p-value	will	be	inaccurate	and	
could	lead	us	to	the	wrong	conclusion	if	we	interpret	them	at	face	value.	

Assumptions	are	often	presented	as	though	different	statistical	procedures	have	their	own	unique	set	of	assumptions.	
However,	because	we’re	usually	fitting	variations	of	the	linear	model	to	our	data,	all	of	the	tests	in	my	book	(Field,	2013)	
basically	have	the	same	assumptions.	These	assumptions	relate	to	the	quality	of	the	model	itself,	and	the	test	statistics	
used	to	assess	it	(which	are	usually	parametric	tests	based	on	the	normal	distribution).	The	main	assumptions	that	we’ll	
look	at	are:	

• Additivity	and	linearity	

• Normality	of	something	or	other	

• Homoscedasticity/homogeneity	of	variance	

• Independence	

Additivity and Linearity 
The	vast	majority	of	statistical	models	in	my	book	are	based	on	the	linear	model,	which	takes	this	form:	

outcome! = 𝑏𝑏$𝑋𝑋$! + 𝑏𝑏'𝑋𝑋'! ⋯ 𝑏𝑏)𝑋𝑋)! + error!	

The	 assumption	 of	 additivity	 and	 linearity	 means	 that	 the	 outcome	 variable	 is,	 in	 reality,	 linearly	 related	 to	 any	
predictors	(i.e.,	their	relationship	can	be	summed	up	by	a	straight	line)	and	that	if	you	have	several	predictors	then	their	
combined	effect	 is	best	described	by	adding	their	effects	 together.	 In	other	words,	 it	means	that	 the	process	we’re	
trying	to	model	can	be	accurately	described	as:	

𝑏𝑏$𝑋𝑋$! + 𝑏𝑏'𝑋𝑋'! ⋯ 𝑏𝑏)𝑋𝑋)!	

This	assumption	is	the	most	important	because	if	it	is	not	true	then	even	if	all	other	assumptions	are	met,	your	model	
is	invalid	because	you	have	described	it	incorrectly.	It’s	a	bit	like	calling	your	pet	cat	a	dog:	you	can	try	to	get	it	to	go	in	
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a	kennel,	or	to	fetch	sticks,	or	to	sit	when	you	tell	it	to,	but	don’t	be	surprised	when	it’s	behaviour	isn’t	what	you	expect	
because	even	though	you’ve	a	called	it	a	dog,	it	is	in	fact	a	cat.	

The assumption of normality 

What does it mean? 

Many	people	take	the	‘assumption	of	normality’	to	mean	that	your	data	need	to	be	normally	distributed.	However,	that	
isn’t	what	it	means.	What	it	does	mean	is:	

1. For	confidence	intervals	around	a	parameter	estimate	(e.g.,	the	mean,	or	a	b)	to	be	accurate,	that	estimate	
must	come	from	a	normal	distribution.	

2. For	significance	tests	of	models	(and	the	parameter	estimates	that	define	them)	to	be	accurate	the	sampling	
distribution	of	what’s	being	tested	must	be	normal.	For	example,	if	testing	whether	two	means	are	different,	
the	 data	 do	 not	 need	 to	 be	 normally	 distributed,	 but	 the	 sampling	 distribution	 of	 means	 (or	 differences	
between	means)	 does.	 Similarly,	 if	 looking	 at	 relationships	between	 variables,	 the	 significance	 tests	 of	 the	
parameter	estimates	that	define	those	relationships	(the	bs	in	Eq.	1)	will	be	accurate	only	when	the	sampling	
distribution	of	the	estimate	is	normal.	

3. For	the	estimates	of	the	parameters	that	define	a	model	(the	bs	in	Eq.	1)	to	be	optimal	(using	the	method	of	
least	squares)	the	residuals	(the	errori	in	Eq.	1)	in	the	population	must	be	normally	distributed.	

The	misconception	 that	people	often	have	about	 the	data	 themselves	needing	 to	be	normally	distributed	probably	
stems	from	the	fact	that	if	the	data	are	normally	distributed	then	it’s	reasonable	to	assume	that	the	errors	in	the	model	
and	the	sampling	distribution	are	also	(and	remember,	we	don’t	have	direct	access	to	the	sampling	distribution	so	we	
have	to	make	educated	guesses	about	its	shape).	

	
Figure	7:	A	distribution	that	looks	non-normal	(left)	could	be	made	up	of	different	groups	of	normally-distributed	scores	

When	you	have	a	categorical	predictor	variable	(such	as	people	falling	into	different	groups)	you	wouldn’t	expect	the	
overall	distribution	of	the	outcome	(or	residuals)	to	be	normal.	For	example,	if	you	have	seen	the	movie	‘the	Muppets’,	
you	will	know	that	Muppets	live	among	us.	Imagine	you	predicted	that	Muppets	are	happier	than	humans	(on	TV	they	
seem	to	be).	You	collect	happiness	scores	in	some	Muppets	and	some	Humans	and	plot	the	frequency	distribution.	You	
get	the	graph	on	the	left	of	Figure	7	and	decide	that	your	data	are	not	normal:	you	think	that	you	have	violated	the	
assumption	 of	 normality.	 However,	 you	 haven’t	 because	 you	 predicted	 that	 Humans	 and	 Muppets	 will	 differ	 in	
happiness;	 in	 other	 words,	 you	 predict	 that	 they	 come	 from	 different	 populations.	 If	 we	 plot	 separate	 frequency	
distributions	for	humans	and	Muppets	(right	of	Figure	7)	you’ll	notice	that	within	each	group	the	distribution	of	scores	
is	very	normal.	The	data	are	as	you	predicted:	Muppets	are	happier	than	humans	and	so	the	centre	of	their	distribution	
is	higher	than	that	of	humans.	When	you	combine	all	of	the	scores	this	gives	you	a	bimodal	distribution	(i.e.,	two	humps).	
This	example	illustrates	that	it	is	not	the	normality	of	the	outcome	(or	residuals)	overall	that	matters,	but	normality	at	
each	unique	level	of	the	predictor	variable.		
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When does the assumption of normality matter? 

The	central	limit	theorem	means	that	there	are	a	variety	of	situations	in	which	we	can	assume	normality	regardless	of	
the	shape	of	our	sample	data	(Lumley,	Diehr,	Emerson,	&	Chen,	2002):	

1. Confidence	intervals:	The	central	limit	theorem	tells	us	that	in	large	samples,	the	estimate	will	have	come	from	
a	normal	distribution	regardless	of	what	the	sample	or	population	data	look	like.	Therefore,	if	we	are	interested	
in	 computing	 confidence	 intervals	 then	we	 don’t	 need	 to	worry	 about	 the	 assumption	 of	 normality	 if	 our	
sample	is	large	enough.	

2. Significance	tests:	the	central	 limit	theorem	tells	us	that	the	shape	of	our	data	shouldn’t	affect	significance	
tests	provided	our	sample	is	large	enough.	However,	the	extent	to	which	test	statistics	perform	as	they	should	
do	in	large	samples	varies	across	different	test	statistics—for	more	information	read	Field	(2013).	

3. Parameter	estimates:	The	method	of	least	squares	will	always	give	you	an	estimate	of	the	model	parameters	
that	minimizes	error,	so	in	that	sense	you	don’t	need	to	assume	normality	of	anything	to	fit	a	linear	model	and	
estimate	the	parameters	that	define	it	(Gelman	&	Hill,	2007).	However,	there	are	other	methods	for	estimating	
model	parameters,	and	if	you	happen	to	have	normally	distributed	errors	then	the	estimates	that	you	obtained	
using	the	method	of	least	squares	will	have	less	error	than	the	estimates	you	would	have	got	using	any	of	these	
other	methods.		

To	sum	up	then,	if	all	you	want	to	do	is	estimate	the	parameters	of	your	model	then	normality	doesn’t	really	matter.	If	
you	want	to	construct	confidence	intervals	around	those	parameters,	or	compute	significance	tests	relating	to	those	
parameters	then	the	assumption	of	normality	matters	in	small	samples,	but	because	of	the	central	limit	theorem	we	
don’t	really	need	to	worry	about	this	assumption	in	larger	samples	(but	see	Field	(2013)	for	a	discussion	of	what	we	
might	mean	by	a	larger	sample).	In	practical	terms,	as	long	as	your	sample	is	fairly	large,	outliers	are	a	more	pressing	
concern	than	normality.		

Homogeneity of Variance/Homoscedasticity 
The	second	assumption	we’ll	explore	relates	to	variance	and	it	can	impact	on	the	two	main	things	that	we	might	do	
when	we	fit	models	to	data:	

• Parameters:	If	we	use	the	method	of	least	squares	to	estimate	the	parameters	in	the	model,	then	this	will	give	
us	optimal	estimates	if	the	variance	of	the	outcome	variable	is	equal	across	different	values	of	the	predictor	
variable.	

• Null	hypothesis	significance	testing:	test	statistics	often	assume	that	the	variance	of	the	outcome	variable	is	
equal	across	different	values	of	the	predictor	variable.	If	this	is	not	the	case	then	these	test	statistics	will	be	
inaccurate.	

Therefore,	to	make	sure	our	estimates	of	the	parameters	that	define	our	model	and	significance	tests	are	accurate	we	
have	to	assume	homoscedasticity	(also	known	as	homogeneity	of	variance).	

What is homoscedasticity/homogeneity of variance? 

In	designs	in	which	you	test	several	groups	of	participants	this	assumption	means	that	each	of	these	samples	comes	
from	populations	with	 the	 same	 variance.	 In	 correlational	 designs,	 this	 assumption	means	 that	 the	 variance	of	 the	
outcome	variable	should	be	stable	at	all	levels	of	the	predictor	variable.	In	other	words,	as	you	go	through	levels	of	the	
predictor	variable,	the	variance	of	the	outcome	variable	should	not	change.		

When does homoscedasticity/homogeneity of variance matter? 

In	terms	of	estimating	the	parameters	within	a	linear	model	if	we	assume	equality	of	variance	then	the	estimates	we	
get	using	the	method	of	least	squares	will	be	optimal.	If	variances	for	the	outcome	variable	differ	along	the	predictor	
variable	then	the	estimates	of	the	parameters	within	the	model	will	not	be	optimal.	They	will	be	‘unbiased’	(Hayes	&	
Cai,	2007)	but	not	optimal.		

Unequal	 variances/heteroscedasticity	 also	 creates	 bias	 and	 inconsistency	 in	 the	 estimate	 of	 the	 standard	 error	
associated	 with	 the	 parameter	 estimates	 (Hayes	 &	 Cai,	 2007).	 This	 basically	 means	 that	 confidence	 intervals	 and	
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significance	 tests	will	be	biased	 (because	 they	are	computed	using	 the	standard	error).	Confidence	 intervals	can	be	
‘extremely	inaccurate’	when	homogeneity	of	variance/homoscedasticity	cannot	be	assumed	(Wilcox,	2010).	Some	test	
statistics	are	designed	to	be	accurate	even	when	this	assumption	is	violated.	

Independence 
This	assumption	means	that	the	errors	in	your	model	(the	errori	in	Eq.	1)	are	not	related	to	each	other.	Imagine	Paul	
and	 Julie	 were	 participants	 in	 an	 experiment	 where	 they	 had	 to	 indicate	 whether	 they	 remembered	 having	 seen	
particular	photos.	If	Paul	and	Julie	were	to	confer	about	whether	they’d	seen	certain	photos	then	their	answers	would	
not	be	independent:	Julie’s	response	to	a	given	question	would	depend	on	Paul’s	answer.	We	know	already	that	if	we	
estimate	a	model	to	predict	their	responses,	there	will	be	error	in	those	predictions	and	because	Paul	and	Julie’s	scores	
are	not	independent	the	errors	associated	with	these	predicted	values	will	also	not	be	independent.	If	Paul	and	Julie	
were	unable	to	confer	 (if	 they	were	 locked	 in	different	rooms)	 then	the	error	 terms	should	be	 independent	 (unless	
they’re	telepathic):	the	error	in	predicting	Paul’s	response	should	not	be	influenced	by	the	error	in	predicting	Julie’s	
response.	

The	equation	that	we	use	to	estimate	the	standard	error	is	valid	only	if	observations	are	independent.	Remember	that	
we	use	the	standard	error	to	compute	confidence	intervals	and	significance	tests,	so	if	we	violate	the	assumption	of	
independence	then	our	confidence	intervals	and	significance	tests	will	be	invalid.	If	we	use	the	method	of	least	squares,	
then	model	parameter	estimates	will	 still	 be	valid	but	not	optimal	 (we	could	get	better	estimates	using	a	different	
method).	In	general,	if	this	assumption	is	violated,	there	are	techniques	you	can	use	described	in	Chapter	20	of	(Field,	
2013).	

Testing Assumptions 
Testing normality 
You	can	look	for	normality	in	three	ways:	(1)	graphs;	(2)	numerically;	and	(3)	significance	tests.	We	can	do	all	three	using	
the	Explore	command	in	SPSS.	In	terms	of	graphs	we	can	look	at	histograms	(which	we’ve	already	learnt	about)	and	P-
P	plots	and	Q-Q	plots.	P-P	and	Q-Q	plots	basically	show	the	same	thing:	a	P-P	plot	plots	the	cumulative	probability	of	a	
variable	against	the	cumulative	probability	of	a	particular	distribution	(in	this	case	a	normal	distribution).	A	Q-Q	plot	
does	the	same	thing	but	expressed	as	quantiles.	With	large	data	sets	Q-Q	plots	are	a	bit	easier	to	interpret.	In	a	sense	
they	plot	the	‘actual	data’	against	 ‘what	you’d	expect	to	get	from	a	normal	distribution’,	so	 if	the	data	are	normally	
distributed	then	the	actual	scores	will	be	the	same	as	the	expected	scores	and	you’ll	get	a	lovely	straight	diagonal	line.	
This	ideal	scenario	is	helpfully	plotted	on	the	graph	and	your	job	is	to	compare	the	data	points	to	this	line.	If	values	fall	
on	the	diagonal	of	the	plot	then	the	variable	is	normally	distributed;	however,	when	the	data	sag	consistently	above	or	
below	the	diagonal	then	this	shows	that	the	kurtosis	differs	from	a	normal	distribution,	and	when	the	data	points	are	S-
shaped,	the	problem	is	skewness.	

Numerically,	 SPSS	 uses	methods	 to	 calculate	 skew	 and	 kurtosis	 (see	 Field	 (2013)	 if	 you	 have	 forgotten	what	 these	
concepts	are)	that	give	values	of	zero	in	a	normal	distribution.	Positive	values	of	skewness	indicate	a	pile-up	of	scores	
on	the	left	of	the	distribution,	whereas	negative	values	indicate	a	pile-up	on	the	right.	Positive	values	of	kurtosis	indicate	
a	pointy	and	heavy-tailed	distribution,	whereas	negative	values	indicate	a	flat	and	light-tailed	distribution.	The	further	
the	value	is	from	zero,	the	more	likely	it	is	that	the	data	are	not	normally	distributed.	

Finally,	we	can	see	whether	the	distribution	of	scores	deviates	from	a	comparable	normal	distribution.	The	Kolmogorov-
Smirnov	test	and	Shapiro-Wilk	test	do	this:	 they	compare	the	scores	 in	the	sample	to	a	normally	distributed	set	of	
scores	with	the	same	mean	and	standard	deviation.	

• If	the	test	is	non-significant	(p	>	.05)	it	tells	us	that	the	distribution	of	the	sample	is	not	significantly	different	
from	a	normal	distribution	(i.e.,	it	is	probably	normal).	

• If,	however,	 the	test	 is	significant	 (p	<	 .05)	then	the	distribution	 in	question	 is	significantly	different	from	a	
normal	distribution	(i.e.,	it	is	non-normal).	

These	tests	seem	great:	in	one	easy	procedure	they	tell	us	whether	our	scores	are	normally	distributed	(nice!).	However,	
the	Jane	Superbrain	Box	explains	some	really	good	reasons	not	to	use	them.	If	you	insist	on	using	them,	bear	Jane’s	
advice	in	mind	and	always	plot	your	data	as	well	and	try	to	make	an	informed	decision	about	the	extent	of	non-normality	
based	on	converging	evidence.	
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Figure	8	shows	the	dialog	boxes	for	the	Explore	command	( ).	First,	enter	
any	variables	of	interest	in	the	box	labelled	Dependent	List	by	highlighting	them	on	the	left-hand	side	and	transferring	
them	by	clicking	on	 .	For	this	example,	select	the	hygiene	scores	for	the	three	days.	If	you	click	on	 	a	dialog	
box	appears,	but	the	default	option	is	fine	(it	will	produce	means,	standard	deviations	and	so	on).	The	more	interesting	
option	 for	 our	 current	 purposes	 is	 accessed	 by	 clicking	 on	 .	 In	 this	 dialog	 box	 select	 the	 option	

,	 and	 this	will	 produce	both	 the	K-S	 test	 and	 some	normal	Q-Q	plots.	 You	 can	 also	 split	 the	
analysis	 by	 a	 factor	 or	 grouping	 varaiable	 (for	 example,	we	 could	 do	 a	 separete	 analysis	 for	males	 and	 females	 by	
dragging	gender	to	the	Factor	List	box	—	we’ll	do	this	later	in	the	handout).	

	
Figure	8:	Dialog	boxes	for	the	explore	command	

We	also	need	to	click	on	 	to	tell	SPSS	how	to	deal	with	misisng	values.	This	is	important	because	although	we	
start	off	with	810	scores	on	day	1,	by	day	two	we	have	only	264	and	this	is	reduced	to	123	on	day	3.	By	default	SPSS	will	
use	only	cases	for	which	there	are	valid	scores	on	all	of	thes	elected	variables.	This	would	mean	that	for	day	1,	even	
though	we	have	810	scores,	it	will	use	only	the	123	cases	for	which	there	are	scores	on	all	three	days.	This	is	known	as	
exlcuding	cases	listwise.	However,	we	want	it	to	use	all	of	the	scores	it	has	on	a	given	day,	which	is	known	as	pairwise.	
Once	you	have	clicked	on	 	select	Exclude	cases	pairwise,	then	click	on	 	to	return	to	the	main	dialog	box	
and	click	on	 	to	run	the	analysis.	
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SELF-TEST:	We	have	already	plotted	a	histogram	of	the	day	1	scores,	using	what	you	leant	before	
plot	histograms	for	the	hygiene	scores	for	days	2	and	3	of	the	Download	Festival.		

	

	

	
Figure	9:	Histograms	(left)	and	P-P	plots	(right)of	the	hygiene	scores	over	the	three	days	of	the	Download	Festival	

Figure	9	shows	the	histograms	(from	the	self-test	tasks)	and	the	corresponding	Q-Q	plots.	The	day	1	scores	look	quite	
normal;	The	Q-Q	plot	echoes	this	view	because	the	data	points	all	fall	very	close	to	the	‘ideal’	diagonal	line.	However,	
the	distributions	for	days	2	and	3	are	not	nearly	as	symmetrical	as	day	1:	they	both	look	positively	skewed.	Again,	this	
can	be	seen	in	the	Q-Q	plots	by	the	data	points	deviating	away	from	the	diagonal.	In	general,	this	seems	to	suggest	that	
by	days	2	and	3,	hygiene	scores	were	much	more	clustered	around	the	low	end	of	the	scale.	Remember	that	the	lower	
the	score,	 the	 less	hygienic	 the	person	 is,	 so	generally	people	became	smellier	as	 the	 festival	progressed.	The	skew	
occurs	because	a	substantial	minority	insisted	on	upholding	their	levels	of	hygiene	(against	all	odds)	over	the	course	of	
the	festival	(baby	wet-wipes	are	indispensable	I	find).	

Output	1	shows	the	table	of	descriptive	statistics	for	the	three	variables	in	this	example.	On	average,	hygiene	scores	
were	1.77	(out	of	5)	on	day	1	of	the	festival,	but	went	down	to	0.96	and	0.98	on	days	2	and	3	respectively.	The	other	
important	measures	for	our	purposes	are	the	skewness	and	the	kurtosis,	both	of	which	have	an	associated	standard	
error.	For	day	1	the	skew	value	is	very	close	to	zero	(which	is	good)	and	kurtosis	is	a	little	negative.	For	days	2	and	3,	
though,	there	is	a	skewness	of	around	1	(positive	skew).	
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We	can	convert	these	values	to	z-scores	which	enables	us	to	(1)	compare	skew	and	kurtosis	values	in	different	samples	
that	used	different	measures,	and	(2)	calculate	a	p-value	that	tells	us	if	the	values	are	significantly	different	from	0	(i.e.,	
normal).	Although	there	are	good	reasons	not	to	do	this	 (see	Jane	Superbrain	Box),	 if	you	want	to	you	can	do	 it	by	
subtracting	the	mean	of	the	distribution	(in	this	case	zero)	from	the	score	and	then	dividing	by	the	standard	error	of	the	
distribution.	

𝑧𝑧+,-./-++ =
𝑆𝑆 − 0

𝑆𝑆𝑆𝑆+,-./-++
	 𝑧𝑧,4567+8+ =

𝐾𝐾 − 0
𝑆𝑆𝑆𝑆,4567+8+

	

In	the	above	equations,	the	values	of	S	(skewness)	and	K	(kurtosis)	and	their	respective	standard	errors	are	produced	
by	SPSS.	These	z-scores	can	be	compared	against	values	that	you	would	expect	to	get	if	skew	and	kurtosis	were	not	
different	from	0.	So,	an	absolute	value	greater	than	1.96	is	significant	at	p	<	.05,	above	2.58	is	significant	at	p	<	.01	and	
above	3.29	is	significant	at	p	<	.001.	However,	you	really	should	use	these	criteria	only	in	small	samples:	in	larger	samples	
look	at	the	shape	of	the	distribution	visually,	interpret	the	value	of	the	skewness	and	kurtosis	statistics,	and	possibly	
don’t	even	worry	about	normality	at	all	(Jane	Superbrain	Box).	

	
Output	1	

	

Using	the	values	in	Output	1,	calculate	the	z-scores	for	skewness	and	Kurtosis	for	each	day	of	
the	Download	festival.	
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Your	Answers:	 	

	
Output	2	

Output	2	shows	the	K-S	test.	Remember	that	a	significant	value	(Sig.	less	than	.05)	indicates	a	deviation	from	normality.	

	

Are	the	results	of	the	K-S	tests	surprising	given	the	histograms	we	have	already	seen?	

Your	Answers:	 	

For	day	1	the	K-S	test	is	just	about	not	significant	(p	=	.097),	which	is	surprisingly	close	to	significant	given	now	normal	
the	day	1	scores	looked	in	the	histogram	(Figure	3).	However,	the	sample	size	on	day	1	is	very	large	(N	=	810)	and	the	
significance	of	 the	K-S	 test	 for	 these	data	shows	how	 in	 large	samples	even	small	and	unimportant	deviations	 from	
normality	might	be	deemed	significant	by	this	test	(Jane	Superbrain	Box).	For	days	2	and	3	the	test	is	highly	significant,	
indicating	that	these	distributions	are	not	normal,	which	is	likely	to	reflect	the	skew	seen	in	the	histograms	for	these	
data	but	could	again	be	down	to	the	large	sample	(Figure	9).	

Reporting the K-S test 

The	test	statistic	for	the	K-S	test	is	denoted	by	D	and	we	should	report	the	degrees	of	freedom	(df)	from	the	table	in	
brackets	after	the	D.	We	can	report	the	results	in	Output	2	in	the	following	way:	

ü The	hygiene	scores	on	day	1,	D(810)	=	0.029,	p	=	.097,	did	not	deviate	significantly	from	normal;	however,	
day	2,	D(264)	=	0.121,	p	<	.001,	and	day	3,	D(123)	=	0.140,	p	<	.001,	scores	were	both	significantly	non-
normal.		

Jane	Superbrain	Box:	Significance	tests	and	assumptions		
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Throughout	this	handout	we	will	look	at	various	significance	tests	that	have	been	devised	to	look	at	whether	
assumptions	 are	 violated.	 These	 include	 tests	 of	 whether	 a	 distribution	 is	 normal	 (the	 Kolmorgorov-
Smirnoff	 and	 Shapiro-Wilk	 tests),	 tests	 of	 homogeneity	 of	 variances	 (Levene’s	 test),	 and	 tests	 of	
significance	of	skew	and	kurtosis.	All	of	these	tests	are	based	on	null	hypothesis	significance	testing	and	
this	means	that	(1)	in	large	samples	they	can	be	significant	even	for	small	and	unimportant	effects,	and	
(2)	in	small	samples	they	will	lack	power	to	detect	violations	of.	

The	central	limit	theorem	means	that	as	sample	sizes	get	larger,	the	less	the	assumption	of	normality	
matters	because	the	sampling	distribution	will	be	normal	regardless	of	what	our	population	(or	indeed	

sample)	data	look	like.	So,	the	problem	is	that	in	large	samples,	where	we	don’t	need	to	worry	about	normality,	a	test	
of	normality	is	more	likely	to	be	significant,	and	therefore	likely	to	make	us	worry	about	and	correct	for	something	that	
doesn’t	need	to	be	corrected	or	worried	about.	Conversely,	 in	small	samples,	where	we	might	want	to	worry	about	
normality,	a	significance	test	won’t	have	the	power	to	detect	non-normality	and	so	is	likely	to	encourage	us	not	to	worry	
about	something	that	we	probably	ought	to.	Therefore,	the	best	advice	is	that	if	your	sample	is	 large	then	don’t	use	
significance	tests	of	normality,	in	fact	don’t	worry	too	much	about	normality	at	all.	In	small	samples	then	pay	attention	
if	your	significance	tests	are	significant	but	resist	being	lulled	into	a	false	sense	of	security	if	they	are	not.	

Testing homogeneity of variance/homoscedasticity 
Like	normality,	you	can	look	at	the	variances	using	graphs,	numbers	and	significance	tests.	Graphically,	we	can	create	a	
scatterplot	of	the	values	of	the	residuals	plotted	against	the	values	of	the	outcome	predicted	by	our	model.	In	doing	so	
we’re	looking	at	whether	there	is	a	systematic	relationship	between	what	comes	out	of	the	model	(the	predicted	values)	
and	the	errors	in	the	model.	Normally	we	convert	the	predicted	values	and	errors	to	z-scores1	so	this	plot	is	sometimes	
referred	 to	 as	 zpred	 vs.	 zresid.	 If	 linearity	 and	 homoscedasticity	 hold	 true	 then	 there	 should	 be	 no	 systematic	
relationship	between	the	errors	in	the	model	and	what	the	model	predicts.	Looking	at	this	graph	can,	therefore,	kill	two	
birds	with	one	stone.	If	this	graph	funnels	out,	then	the	chances	are	that	there	is	heteroscedasticity	in	the	data.	If	there	
is	any	sort	of	curve	in	this	graph	then	the	chances	are	that	the	data	have	broken	the	assumption	of	linearity.	

Figure	10	shows	several	examples	of	the	plot	of	standardized	residuals	against	standardized	predicted	values.	The	top	
left	panel	shows	a	situation	in	which	the	assumptions	of	linearity	and	homoscedasticity	have	been	met.	The	top	right	
panel	shows	a	similar	plot	for	a	data	set	that	violates	the	assumption	of	homoscedasticity.	Note	that	the	points	form	a	
funnel:	they	become	more	spread	out	across	the	graph.	This	funnel	shape	is	typical	of	heteroscedasticity	and	indicates	
increasing	variance	across	the	residuals.	The	bottom	left	panel	shows	a	plot	of	some	data	in	which	there	is	a	non-linear	
relationship	between	the	outcome	and	the	predictor:	there	is	a	clear	curve	in	the	residuals.	Finally,	the	bottom	right	
panel	illustrates	data	that	not	only	have	a	non-linear	relationship,	but	also	show	heteroscedasticity.	Note	first	the	curved	
trend	in	the	residuals,	and	then	also	note	that	at	one	end	of	the	plot	the	points	are	very	close	together	whereas	at	the	
other	end	they	are	widely	dispersed.	When	these	assumptions	have	been	violated	you	will	not	see	these	exact	patterns,	
but	hopefully	these	plots	will	help	you	to	understand	the	general	anomalies	you	should	look	out	for.	

Numerically,	we	can	simply	look	at	the	values	of	the	variances	in	different	groups.	Some	people	look	at	Hartley’s	FMax	
also	known	as	the	variance	ratio	(Pearson	&	Hartley,	1954).	This	is	the	ratio	of	the	variances	between	the	group	with	
the	biggest	variance	and	the	group	with	the	smallest	variance.	The	acceptable	size	of	this	ratio	depends	on	the	number	
of	variances	compared	and	the	sample	size—	see	(Field,	2013)	for	more	detail.	

More	commonly	used	is	Levene’s	test	(Levene,	1960),	which	tests	the	null	hypothesis	that	the	variances	in	different	
groups	are	equal.	

• If	 Levene’s	 test	 is	 significant	 at	 p£	 .05	 then	 you	 conclude	 that	 the	 variances	 are	 significantly	 different—
therefore,	the	assumption	of	homogeneity	of	variances	has	been	violated.	

• If,	 however,	 Levene’s	 test	 is	 non-significant	 (i.e.,	 p	 >	 .05)	 then	 the	 variances	 are	 roughly	 equal	 and	 the	
assumption	is	tenable.	

																																																																				
1	Theses	standardized	errors	are	called	standardized	residuals.	



	

©	Prof.	Andy	Field,	2016	 www.discoveringstatistics.com	 Page	14	

	

Although	Levene’s	test	can	be	selected	as	an	option	in	many	of	the	statistical	tests	that	require	it,	it’s	best	to	look	at	it	
when	you’re	exploring	data	because	it	informs	the	model	you	fit.	As	with	the	K-S	test	you	need	to	take	Levene’s	test	
with	a	pinch	of	salt	(Jane	Superbrain	Box).	

	

Figure	10:	Plots	of	standardized	residuals	against	predicted	(fitted)	values	

We	can	get	Levene’s	test	using	the	explore	menu	that	we	used	in	the	previous	section.	Sticking	with	the	hygiene	scores,	
we’ll	 compare	 the	 variances	 of	 males	 and	 females	 on	 day	 1	 of	 the	 festival.	 Use	

	to	open	the	dialog	box	in	Figure	11.	Transfer	the	day1	variable	from	the	list	on	the	left-hand	side	to	the	box	
labelled	Dependent	List	by	clicking	on	the	 	next	to	this	box;	because	we	want	to	split	 the	output	by	the	grouping	
variable	to	compare	the	variances,	select	the	variable	gender	and	transfer	it	to	the	box	labelled	Factor	List	by	clicking	
on	the	appropriate	 .	Then	click	on	 	to	open	the	other	dialog	box	in	Figure	11.	To	get	Levene’s	test	we	need	
to	select	one	of	the	options	where	it	says	Spread	vs.	level	with	Levene	test.	If	you	select	 	Levene’s	test	
is	carried	out	on	the	raw	data	(a	good	place	to	start).	When	you’ve	finished	with	this	dialog	box	click	on	 	to	return	
to	the	main	Explore	dialog	box	and	then	click	on	 	to	run	the	analysis.	

Output	3	shows	the	table	for	Levene’s	test.	Levene’s	test	can	be	based	on	differences	between	scores	and	the	mean,	
and	scores	and	the	median.	The	median	is	slightly	preferable	(because	it	is	less	biased	by	outliers).	When	using	both	the	
mean	(p	=	.030)	and	the	median	(p	=	.037)	the	significance	values	are	less	than	.05	indicating	a	significant	difference	
between	the	male	and	female	variances.	To	calculate	the	variance	ratio,	we	need	to	divide	the	largest	variance	by	the	
smallest.	You	should	 find	the	variances	 in	your	output:	 the	male	variance	was	0.413	and	the	 female	one	0.496,	 the	
variance	ratio	is,	therefore,	0.496/0.413	=	1.2.	In	essence	the	variances	are	practically	equal.	So,	why	does	Levene’s	test	
tell	us	they	are	significantly	different?	The	answer	is	because	the	sample	sizes	are	so	large:	we	had	315	males	and	495	
females	so	even	this	very	small	difference	in	variances	is	shown	up	as	significant	by	Levene’s	test	(Jane	Superbrain	Box).	
Hopefully	this	example	convinces	you	to	treat	this	test	cautiously.	
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Figure	11:	Exploring	groups	of	data	and	obtaining	Levene’s	test	

	

Output	3	

Reporting Levene’s test 

Levene’s	test	can	be	denoted	with	the	letter	F	and	there	are	two	different	degrees	of	freedom.	As	such	you	can	report	
it,	in	general	form,	as	F(df1,	df2)	=	value,	sig:	

ü For	the	hygiene	scores	on	day	1	of	the	festival,	the	variances	were	unequal	for	for	males	and	females,	F(1,	
808)	=	4.74,	p	=	.03.	

	

What	is	the	assumption	of	homogeneity	of	variance?	

Your	Answers:	 	

Reducing Bias 
Having	looked	at	potential	sources	of	bias,	the	next	issue	is	how	to	reduce	the	impact	of	bias.	Essentially	there	are	four	
methods	for	correcting	problems	with	the	data,	which	can	be	remembered	with	the	handy	acronym	of	TWAT:	
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• Trim	the	data:	delete	a	certain	amount	of	scores	from	the	extremes.		

• Windsorizing:	substitute	outliers	with	the	highest	value	that	isn’t	an	outlier.		

• Analyse	with	Robust	Methods:	this	typically	involves	a	technique	known	as	bootstrapping.	

• Transform	the	data:	this	involves	applying	a	mathematical	function	to	scores	to	try	to	correct	any	problems	
with	them.	

Probably	the	best	of	these	choices	is	to	use	robust	tests,	which	is	a	term	applied	to	a	family	of	procedures	to	estimate	
statistics	 that	are	 reliable	even	when	 the	normal	assumptions	of	 the	 statistic	are	not	met.	 For	 the	purposes	of	 this	
handout	we’ll	look	at	transforming	data,	and	throughout	the	module	we’ll	use	bootstrapping	(which	is	a	robust	method	
explained	in	your	lecture),	but	you	can	find	more	detail	on	these	techniques	and	the	other	in	Chapter	5	of	(Field,	2013).	

Bootstrapping (robust methods) 
Some	SPSS	procedures	have	a	bootstrap	option,	which	can	be	accessed	by	clicking	on	 	to	activate	the	dialog	box	
in	Figure	12.	Select	 	to	activate	bootstrapping	for	the	procedure	you’re	currently	doing.	In	terms	
of	the	options,	SPSS	will	compute	a	95%	percentile	confidence	interval	( ),	but	you	can	change	the	method	to	
a	slightly	more	accurate	one	(Efron	&	Tibshirani,	1993)	called	a		bias	corrected	and	accelerated	confidence	interval	(

).	You	can	also	change	the	confidence	level	by	typing	a	number	other	than	95	in	the	box	
labelled	 Level(%).	 By	 default,	 SPSS	 uses	 1000	 bootstrap	 samples,	 which	 is	 a	 reasonable	 number	 and	 you	 certainly	
wouldn’t	need	to	use	more	than	2000.	

	
http://youtu.be/mNrxixgwA2M	

	

Figure	12:	The	standard	bootstrap	dialog	box	

Transforming Data 
The	final	thing	that	you	can	do	to	combat	problems	with	normality	and	linearity	 is	to	transform	your	data.	The	idea	
behind	transformations	is	that	you	do	something	to	every	score	to	correct	for	distributional	problems,	outliers,	lack	of	
linearity	or	unequal	variances.	If	you	are	looking	at	relationships	between	variables	(e.g.,	regression)	just	transform	the	
problematic	variable,	but	if	you	are	looking	at	differences	between	variables	(e.g.,	change	in	a	variable	over	time)	then	
you	need	to	transform	all	of	those	variables.	For	example,	our	festival	hygiene	data	were	not	normal	on	days	2	and	3	of	
the	festival.	Now,	we	might	want	to	look	at	how	hygiene	levels	changed	across	the	three	days	(i.e.,	compare	the	mean	
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on	day	1	to	the	means	on	days	2	and	3	to	see	if	people	got	smellier).	The	data	for	days	2	and	3	were	skewed	and	need	
to	be	transformed,	but	because	we	might	later	compare	the	data	to	scores	on	day	1,	we	would	also	have	to	transform	
the	day	1	data	(even	though	scores	were	not	skewed).	If	we	don’t	change	the	day	1	data	as	well,	then	any	differences	
in	hygiene	scores	we	 find	 from	day	1	 to	day	2	or	3	will	be	due	to	us	 transforming	one	variable	and	not	 the	others.	
However,	 if	we	were	going	to	 look	at	the	relationship	between	day	1	and	day	2	scores	(not	the	difference	between	
them)	we	could	transform	only	the	day	2	scores	and	leave	the	day	1	scores	alone.	

Choosing a transformation 

There	are	various	transformations	that	you	can	do	to	the	data	that	are	helpful	in	correcting	various	problems.	Table	1:	
shows	some	common	transformations	and	their	uses.	The	way	to	decide	which	transformation	to	use	is	by	good	old	
fashioned	trial	and	error:	try	one	out,	see	if	it	helps	and	if	it	doesn’t	then	try	a	different	one.		

Table	1:	Data	transformations	and	their	uses	

Data	Transformation	 Can	Correct	For	

Log	transformation	(log(Xi)):	Taking	the	logarithm	of	a	set	of	numbers	squashes	the	right	tail	of	the	distribution.	As	such	it’s	
a	 good	way	 to	 reduce	positive	 skew.	 This	 transformation	 is	 also	 very	useful	 if	 you	have	problems	with	 linearity	 (it	 can	
sometimes	make	a	curvilinear	relationship	linear).	However,	you	can’t	get	a	log	value	of	zero	or	negative	numbers,	so	if	your	
data	 tend	 to	 zero	 or	 produce	 negative	 numbers	 you	 need	 to	 add	 a	 constant	 to	 all	 of	 the	 data	 before	 you	 do	 the	
transformation.	For	example,	if	you	have	zeros	in	the	data	then	do	log(Xi	+	1),	or	if	you	have	negative	numbers	add	whatever	
value	makes	the	smallest	number	in	the	data	set	positive.	

Positive	 skew,	
positive	 kurtosis,	
unequal	 variances,	
lack	of	linearity	

Square	root	transformation	(ÖÖXi):	Taking	the	square	root	of	large	values	has	more	of	an	effect	than	taking	the	square	root	
of	small	values.	Consequently,	taking	the	square	root	of	each	of	your	scores	will	bring	any	large	scores	closer	to	the	centre—
rather	like	the	log	transformation.	As	such,	this	can	be	a	useful	way	to	reduce	positive	skew;	however,	you	still	have	the	
same	problem	with	negative	numbers	(negative	numbers	don’t	have	a	square	root).	

Positive	 skew,		
positive	 kurtosis,	
unequal	 variances,		
lack	of	linearity	

Reciprocal	transformation	(1/Xi):	Dividing	1	by	each	score	also	reduces	the	impact	of	large	scores.	The	transformed	variable	
will	have	a	lower	limit	of	0	(very	large	numbers	will	become	close	to	0).	One	thing	to	bear	in	mind	with	this	transformation	
is	 that	 it	 reverses	 the	 scores:	 scores	 that	 were	 originally	 large	 in	 the	 data	 set	 become	 small	 (close	 to	 zero)	 after	 the	
transformation,	but	scores	that	were	originally	small	become	big	after	the	transformation.	For	example,	imagine	two	scores	
of	1	and	10;	after	the	transformation	they	become	1/1	=	1,	and	1/10	=	0.1:	the	small	score	becomes	bigger	than	the	large	
score	after	the	transformation.	However,	you	can	avoid	this	by	reversing	the	scores	before	the	transformation,	by	finding	
the	 highest	 score	 and	 changing	 each	 score	 to	 the	 highest	 score	 minus	 the	 score	 you’re	 looking	 at.	 So,	 you	 do	 a	
transformation	1/(XHighest−Xi).	Like	the	log	transformation,	you	can’t	take	the	reciprocal	of	0	(because	1/0	=	infinity)	so	if	you	
have	zeros	in	the	data	you	need	to	add	a	constant	to	all	scores	before	doing	the	transformation.	

Positive	 skew,		
positive	 kurtosis,	
unequal	variances	

Reverse	score	transformations:	Any	one	of	the	above	transformations	can	be	used	to	correct	negatively	skewed	data,	but	
first	you	have	to	reverse	the	scores.	To	do	this,	subtract	each	score	from	the	highest	score	obtained,	or	the	highest	score	+	
1	(depending	on	whether	you	want	your	lowest	score	to	be	0	or	1).	If	you	do	this,	don’t	forget	to	reverse	the	scores	back	
afterwards,	or	to	remember	that	the	 interpretation	of	the	variable	 is	reversed:	big	scores	have	become	small	and	small	
scores	have	become	big.	

Negative	skew	

Trying	out	different	transformations	can	be	quite	time	consuming;	however,	if	heterogeneity	of	variance	is	your	issue	
then	we	can	see	the	effect	of	a	transformation	quite	quickly.	When	we	ran	Levene’s	test	(Figure	11)	we	ran	the	analysis	
selecting	the	raw	scores	( ).	However,	if	the	variances	turn	out	to	be	unequal,	as	they	did	in	our	example,	
you	can	use	the	same	dialog	box	but	select	 .	When	you	do	this	you	should	notice	a	drop-down	list	that	
becomes	active	and	if	you	click	on	this	you’ll	notice	that	it	lists	several	transformations	including	the	ones	that	I	have	
just	described.	If	you	select	a	transformation	from	this	list	(Natural	log	perhaps	or	Square	root)	then	SPSS	will	calculate	
what	Levene’s	test	would	be	if	you	were	to	transform	the	data	using	this	method.	This	can	save	you	a	lot	of	time	trying	
out	different	transformations.	

Using SPSS’s Compute command 

The	compute	command	enables	us	to	carry	out	various	functions	on	columns	of	data	in	the	data	editor.	Some	typical	
functions	are	adding	scores	across	several	columns,	taking	the	square	root	of	the	scores	in	a	column,	or	calculating	the	
mean	of	several	variables.	To	access	the	compute	dialog	box,	use	the	mouse	to	select	 	 .	The	
resulting	dialog	box	is	shown	in	Figure	13;	it	has	a	list	of	functions	on	the	right-hand	side,	a	calculator-like	keyboard	in	
the	centre	and	a	blank	space	that	I’ve	labelled	the	command	area.	The	basic	idea	is	that	you	type	a	name	for	a	new	
variable	in	the	area	labelled	Target	Variable	and	then	you	write	some	kind	of	command	in	the	command	area	to	tell	
SPSS	how	to	create	this	new	variable.	You	use	a	combination	of	existing	variables	selected	from	the	list	on	the	left	and	
numeric	expressions.	So,	for	example,	you	could	use	it	like	a	calculator	to	add	variables	(i.e.	add	two	columns	in	the	data	
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editor	to	make	a	third).	There	are	hundreds	of	built-in	functions	that	SPSS	has	grouped	together.	In	the	dialog	box	it	lists	
these	groups	in	the	area	labelled	Function	group;	upon	selecting	a	function	group,	a	list	of	available	functions	within	
that	group	will	appear	in	the	box	labelled	Functions	and	Special	Variables.	If	you	select	a	function,	then	a	description	of	
that	function	appears	in	the	box	indicated	in	Figure	13.	You	can	enter	variable	names	into	the	command	area	by	selecting	
the	variable	required	from	the	variables	list	and	then	clicking	on	 .	Likewise,	you	can	select	a	certain	function	from	the	
list	of	available	functions	and	enter	it	into	the	command	area	by	clicking	on	 .	

First	type	a	variable	name	in	the	box	labelled	Target	Variable,	then	click	on	 	and	another	dialog	box	appears,	
where	you	 can	give	 the	variable	a	descriptive	 label	 and	 specify	whether	 it	 is	 a	numeric	or	 string	variable	 (see	your	
handout	 from	week	1).	 Then	when	you	have	written	your	 command	 for	 SPSS	 to	execute,	 click	on	 	 to	 run	 the	
command	and	create	 the	new	variable.	There	are	 functions	 for	calculating	means,	 standard	deviations	and	sums	of	
columns.	We’re	going	to	use	the	square	root	and	logarithm	functions,	which	are	useful	for	transforming	data	that	are	
skewed.	

	
Figure	13:	Dialog	box	for	the	Compute	command	

Log Transformation 

Let’s	return	to	our	Download	festival	data.	Open	the	main	Compute	dialog	box	by	selecting	 	 .	
Enter	 the	 name	 logday1	 into	 the	 box	 labelled	 Target	 Variable,	 click	 on	 	 and	 give	 the	 variable	 a	 more	
descriptive	name	such	as	Log	transformed	hygiene	scores	for	day	1	of	Download	festival.	In	the	list	box	labelled	Function	
group	 click	on	Arithmetic	 and	 then	 in	 the	box	 labelled	Functions	and	Special	Variables	 click	on	Lg10	 (this	 is	 the	 log	
transformation	 to	base	10,	Ln	 is	 the	natural	 log)	 and	 transfer	 it	 to	 the	 command	area	by	 clicking	on	 .	When	 the	

Command area

Categories of 
functions

Functions 
within the 
selected 
category

Use this dialog box to 
select certain cases

in the data

Variable list

Description of
selected function
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command	is	transferred,	it	appears	in	the	command	area	as	‘LG10(?)’	and	the	question	mark	should	be	replaced	with	a	
variable	name	(which	can	be	typed	manually	or	transferred	from	the	variables	list).	So	replace	the	question	mark	with	
the	variable	day1	by	either	selecting	the	variable	in	the	list	and	dragging	it	across,	clicking	on	 ,	or	just	typing	‘day1’	
where	the	question	mark	is.	

For	 the	day	2	hygiene	scores	 there	 is	a	value	of	0	 in	 the	original	data,	and	 there	 is	no	 logarithm	of	 the	value	0.	To	
overcome	the	problem	we	add	a	constant	to	our	original	scores	before	we	take	the	log	of	those	scores.	Any	constant	
will	do	(although	sometimes	it	can	matter),	provided	that	it	makes	all	of	the	scores	greater	than	0.	In	this	case	our	lowest	
score	is	0	in	the	data	so	we	could	add	1	to	all	of	the	scores	to	ensure	that	all	scores	are	greater	than	zero.	Even	though	
this	problem	affects	the	day	2	scores,	we	need	to	be	consistent	and	do	the	same	to	the	day	1	scores	as	we	will	do	with	
the	day	2	scores.	Therefore,	make	sure	the	cursor	is	still	inside	the	brackets	and	click	on	 	and	then	 .	The	final	dialog	
box	should	look	like	Figure	13.	Note	that	the	expression	reads	LG10(day1	+	1);	that	is,	SPSS	will	add	one	to	each	of	the	
day1	scores	and	then	take	the	log	of	the	resulting	values.	Click	on	 	to	create	a	new	variable	logday1	containing	the	
transformed	values.	

	

SELF	TEST:	Have	a	go	at	creating	similar	variables	logday2	and	logday3	for	the	day	2	and	day	3	
data.	Plot	histograms	of	the	transformed	scores	for	all	three	days.	

Square Root Transformation 

To	use	the	square	root	transformation,	we	could	run	through	the	same	process,	by	using	a	name	such	as	sqrtday1	and	
selecting	the	SQRT(numexpr)	function	from	the	list.	This	will	appear	in	the	box	labelled	Numeric	Expression:	as	SQRT(?),	
and	 you	 can	 simply	 replace	 the	 question	mark	with	 the	 variable	 you	want	 to	 change—in	 this	 case	day1.	 The	 final	
expression	will	read	SQRT(day1).		

	

SELF	TEST:	Repeat	this	process	for	day2	and	day3	to	create	variables	called	sqrtday2	and	sqrtday3.	
Plot	histograms	of	the	transformed	scores	for	all	three	days.	

Reciprocal Transformation 

To	do	a	reciprocal	transformation	on	the	data	from	day	1,	we	could	use	a	name	such	as	recday1	 in	the	box	labelled	
Target	Variable.	Then	we	can	simply	click	on	 	and	then	 .	Ordinarily	you	would	select	the	variable	name	that	you	
want	to	transform	from	the	list	and	drag	it	across,	click	on	 	or	just	type	the	name	of	the	variable.	However,	the	day	2	
data	contain	a	zero	value	and	if	we	try	to	divide	1	by	0	then	we’ll	get	an	error	message	(you	can’t	divide	by	0).	We	need	
to	add	a	constant	to	our	variable	just	as	we	did	for	the	log	transformation.	Any	constant	will	do,	but	1	is	a	convenient	
number	for	these	data.	So,	 instead	of	selecting	the	variable	we	want	to	transform,	click	on	 .	This	places	a	pair	of	
brackets	into	the	box	labelled	Numeric	Expression;	then	make	sure	the	cursor	is	between	these	two	brackets	and	select	
the	variable	you	want	to	transform	from	the	list	and	transfer	it	across	by	clicking	on	 	(or	type	the	name	of	the	variable	
manually).	Now	click	on	 	and	then	 	(or	type	+	1	using	your	keyboard).	The	box	labelled	Numeric	Expression	should	
now	contain	the	text	1/(day1	+	1).	Click	on	 	to	create	a	new	variable	containing	the	transformed	values.	

	

SELF	TEST:	Repeat	this	process	for	day2	and	day3.	Plot	histograms	of	the	transformed	scores	for	
all	three	days.	

The effect of transformations 

Figure	14	shows	the	distributions	for	days	1	and	2	of	the	festival	after	the	three	different	transformations.	Compare	
these	to	the	untransformed	distributions	in	Figure	9.	Now,	you	can	see	that	all	three	transformations	have	cleaned	up	
the	hygiene	scores	for	day	2:	the	positive	skew	is	reduced	(the	square	root	transformation	in	particular	has	been	useful).	
However,	because	our	hygiene	scores	on	day	1	were	more	or	less	symmetrical	to	begin	with,	they	have	now	become	
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slightly	 negatively	 skewed	 for	 the	 log	 and	 square	 root	 transformation,	 and	 positively	 skewed	 for	 the	 reciprocal	
transformation2	If	we’re	using	scores	from	day	2	alone	or	looking	at	the	relationship	between	day	1	and	day	2,	then	we	
could	use	the	transformed	scores;	however,	if	we	wanted	to	look	at	the	change	in	scores	then	we’d	have	to	weigh	up	
whether	the	benefits	of	the	transformation	for	the	day	2	scores	outweigh	the	problems	it	creates	in	the	day	1	scores—
data	analysis	can	be	frustrating	sometimesJ	

	

Figure	14:	Distributions	of	the	hygiene	data	on	day	1	and	day	2	after	various	transformations	

	

Multiple Choice Test 
Go	to	https://studysites.uk.sagepub.com/field4e/study/mcqs.htm	and	test	yourself	on	the	multiple	choice	questions	
for	Chapter	5.	If	you	get	any	wrong,	re-read	this	handout	(or	Field,	2013,	Chapter	5)	and	do	them	again	until	you	get	
them	all	correct.	

																																																																				
2	The	reversal	of	the	skew	for	the	reciprocal	transformation	is	because,	as	I	mentioned	earlier,	the	reciprocal	has	the	
effect	of	reversing	the	scores.	

Day 1 Day 2

Log

Square 
root

1/x
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