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Introducing the Linear Model 
What is Correlational Research? 
Correlational	designs	are	when	many	variables	are	measured	simultaneously	but	unlike	in	an	experiment	none	of	them	
are	manipulated.	When	we	use	correlational	designs	we	can’t	look	for	cause-effect	relationships	because	we	haven’t	
manipulated	any	of	the	variables,	and	also	because	all	of	the	variables	have	been	measured	at	the	same	point	in	time	
(if	 you’re	 really	 bored,	 Field,	 2013,	 Chapter	 1	 explains	 why	 experiments	 allow	 us	 to	 make	 causal	 inferences	 but	
correlational	 research	does	not).	 In	psychology,	 the	most	common	correlational	 research	consists	of	 the	 researcher	
administering	several	questionnaires	that	measure	different	aspects	of	behaviour	to	see	which	aspects	of	behaviour	are	
related.	Many	of	you	will	do	this	sort	of	research	for	your	final	year	research	project	(so	pay	attention!).	

The linear model 
In	the	first	few	lectures	we	saw	that	the	only	equation	we	ever	really	need	is	this	one:	

	outcome! = Model! + error!	

We	also	saw	that	we	often	fit	a	linear	model,	which	in	its	simplest	form	can	be	written	as:	

outcome! = 𝑏𝑏* + 𝑏𝑏+𝑋𝑋! + error!	

y! = 𝑏𝑏* + 𝑏𝑏+𝑋𝑋! + ε!	
Eq.	1	

The	fundamental	idea	is	that	an	outcome	for	an	entity	can	be	predicted	from	a	model	and	some	error	associated	with	
that	 prediction	 (ei).	We	 are	 predicting	 an	 outcome	 variable	 (yi)	 from	 a	 predictor	 variable	 (Xi)	 and	 a	 parameter,	b1,	
associated	with	the	predictor	variable	that	quantifies	the	relationship	it	has	with	the	outcome	variable.	We	also	need	a	
parameter	that	tells	us	the	value	of	the	outcome	when	the	predictor	is	zero;	this	parameter	is	b0.	

You	might	recognize	this	model	as	‘the	equation	of	a	straight	line’.	I	have	talked	about	fitting	‘linear	models’,	and	linear	
simply	means	‘straight	line’.	Any	straight	line	can	be	defined	by	two	things:	(1)	the	slope	(or	gradient)	of	the	line	(usually	
denoted	by	b1);	and	(2)	the	point	at	which	the	line	crosses	the	vertical	axis	of	the	graph	(known	as	the	intercept	of	the	
line,	b0).	These	parameters	b1	and	b0	are	known	as	the	regression	coefficients	and	will	crop	up	time	and	time	again,	
where	you	may	see	them	referred	to	generally	as	b	(without	any	subscript)	or	bn	(meaning	the	b	associated	with	variable	
n).	A	particular	line	(i.e.,	model)	will	have	has	a	specific	intercept	and	gradient.	

	

Figure	1:	Shows	lines	with	the	same	gradients	but	different	intercepts,	and	lines	that	share	the	same	intercept	but	have	
different	gradients	

	

Same intercepts, different gradients Same gradients, different intercepts
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Figure	1	shows	a	set	of	lines	that	have	the	same	intercept	but	different	gradients.	For	these	three	models,	b0	will	be	the	
same	in	each	but	the	values	of	b1	will	differ	in	each;	this	figure	also	shows	models	that	have	the	same	gradients	(b1	is	
the	same	 in	each	model)	but	different	 intercepts	 (the	b0	is	different	 in	each	model).	 I’ve	mentioned	already	 that	b1	
quantifies	the	relationship	between	the	predictor	variable	and	the	outcome,	and	Figure	1	illustrates	this	point.	A	model	
with	a	positive	b1	describes	a	positive	relationship,	whereas	a	line	with	a	negative	b1	describes	a	negative	relationship.	
Looking	 at	 Figure	1	 (left)	 the	 red	 line	describes	 a	 positive	 relationship	whereas	 the	 green	 line	describes	 a	 negative	
relationship.	 As	 such,	 we	 can	 use	 a	 linear	model	 (i.e.,	 a	 straight	 line)	 to	 summarize	 the	 relationship	 between	 two	
variables:	the	gradient	(b1)	tells	us	what	the	model	looks	like	(its	shape)	and	the	intercept	(b0)	tells	us	where	the	model	
is	(its	location	in	geometric	space).	

This	is	all	quite	abstract	so	let’s	look	at	an	example.	Imagine	that	I	was	interested	in	predicting	physical	and	downloaded	
album	sales	(outcome)	from	the	amount	of	money	spent	advertising	that	album	(predictor).	We	could	summarize	this	
relationship	using	a	linear	model	by	replacing	the	names	of	our	variables	into	Eq.	1.	

y! = 𝑏𝑏* + 𝑏𝑏+𝑋𝑋! + ε!	

album	sales! = 𝑏𝑏* + 𝑏𝑏+advertising	budget! + ε!	
Eq.	2	

	

Once	we	have	estimated	the	values	of	the	bs	we	would	be	able	to	make	a	prediction	about	album	sales	by	replacing	
‘advertising’	with	a	number	representing	how	much	we	wanted	to	spend	advertising	an	album.	For	example,	imagine	
that	b0	turned	out	to	be	50	and	b1	turned	out	to	be	100,	our	model	would	be:	

album	sales! = 50 + 100×advertising	budget! + ε!	 Eq.	3	

Note	that	I	have	replaced	the	betas	with	their	numeric	values.	Now,	we	can	make	a	prediction.	Imagine	we	wanted	to	
spend	£5	on	advertising,	we	can	 replace	 the	variable	 ‘advertising	budget’	with	 this	value	and	solve	 the	equation	 to	
discover	how	many	album	sales	we	will	get:	

album	sales! = 50 + 100×5 + ε!	
= 550 + ε!	

So,	based	on	our	model	we	can	predict	that	if	we	spend	£5	on	advertising,	we’ll	sell	550	albums.	I’ve	left	the	error	term	
in	there	to	remind	you	that	this	prediction	will	probably	not	be	perfectly	accurate.	This	value	of	550	album	sales	is	known	
as	a	predicted	value.		

The linear model with several predictors 
We	have	seen	that	we	can	use	a	straight	line	to	‘model’	the	relationship	between	two	variables.	However,	life	is	usually	
more	complicated	than	that:	there	are	often	numerous	variables	that	might	be	related	to	the	outcome	of	interest.	To	
take	our	album	sales	example,	we	might	expect	variables	other	than	simply	advertising	to	have	an	effect.	For	example,	
how	much	someone	hears	songs	from	the	album	on	the	radio,	or	the	‘look’	of	the	band	might	have	an	influence.	One	
of	the	beautiful	things	about	the	linear	model	is	that	it	can	be	expanded	to	include	as	many	predictors	as	you	like.	To	
add	a	predictor	all	we	need	to	do	is	place	it	into	the	model	and	give	it	a	b	that	estimates	the	relationship	in	the	population	
between	that	predictor	and	the	outcome.	For	example,	if	we	wanted	to	add	the	number	of	plays	of	the	band	on	the	
radio	per	week	(airplay),	we	could	add	this	second	predictor	in	general	as:	

𝑌𝑌! = 𝑏𝑏* + 𝑏𝑏+𝑋𝑋+! + 𝑏𝑏>𝑋𝑋>! + 𝜀𝜀!	 Eq.	4	

Note	that	all	 that	has	changed	 is	the	addition	of	a	second	predictor	(X2)	and	an	associated	parameter	(b2).	To	make	
things	more	concrete,	let’s	use	the	variable	names	instead:	

album	sales! = 𝑏𝑏* + 𝑏𝑏+advertising	budget! + 𝑏𝑏>airplay! + 𝜀𝜀!	 Eq.	5	

The	new	model	includes	a	b-value	for	both	predictors	(and,	of	course,	the	constant,	b0).	If	we	estimate	the	b-values,	we	
could	make	predictions	about	album	sales	based	not	only	on	the	amount	spent	on	advertising	but	also	in	terms	of	radio	
play.	
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Multiple	 regression	 can	 be	 used	with	 three,	 four	 or	 even	 ten	 or	more	 predictors.	 In	 general	 we	 can	 add	 as	many	
predictors	as	we	like,	and	the	linear	model	will	expand	accordingly:	

𝑌𝑌! = 𝑏𝑏* + 𝑏𝑏+𝑋𝑋+! + 𝑏𝑏>𝑋𝑋>! ⋯ 𝑏𝑏D𝑋𝑋D! + 𝜀𝜀!	 Eq.	6	

In	which,	Y	 is	the	outcome	variable,	b1	 is	the	coefficient	of	the	first	predictor	(X1),	b2	 is	the	coefficient	of	the	second	
predictor	(X2),	bn	is	the	coefficient	of	the	nth	predictor	(Xni),	and	ei	is	the	error	for	the	ith	participant.	(The	brackets	aren’t	
necessary,	they’re	just	to	make	the	connection	to	Eq.	1).	This	equation	illustrates	that	we	can	add	in	as	many	predictors	
as	we	like	until	we	reach	the	final	one	(Xn),	but	each	time	we	do,	we	assign	it	a	regression	coefficient	(b).	

Estimating the model 
Linear	models	can	be	described	entirely	by	a	constant	(b0)	and	by	parameters	associated	with	each	predictor	(bs).	These	
parameters	 are	 estimated	 using	 the	method	 of	 least	 squares	 (described	 in	 your	 lecture).	 This	method	 is	 known	 as	
ordinary	least	squares	(OLS)	regression.	In	other	words,	SPSS	finds	the	values	of	the	parameters	that	have	the	least	
amount	of	error	(relative	to	any	other	value)	for	the	data	you	have.	

Assessing the goodness of fit, sums of squares, R and R2 
Once	Nephwick	and	Clungglewad	have	found	the	model	of	best	fit	it	is	important	that	we	assess	how	well	this	model	
fits	the	actual	data	(we	assess	the	goodness	of	fit	of	the	model).	We	do	this	because	even	though	the	model	is	the	best	
one	available,	 it	can	still	be	a	 lousy	fit	 to	the	data.	One	measure	of	the	adequacy	of	a	model	 is	 the	sum	of	squared	
differences	(think	back	to	lecture	2,	or	Field,	2013,	Chapter	2).	There	are	several	sums	of	squares	that	can	be	calculated	
to	help	us	gauge	the	contribution	of	our	model	to	predicting	the	outcome.	Let’s	go	back	to	our	example	of	predicting	
album	sales	(Y)	from	the	amount	of	money	spent	advertising	that	album	(X).	One	day	my	boss	came	in	to	my	office	and	
said	‘Andy,	I	know	you	wanted	to	be	a	rock	star	and	you’ve	ended	up	working	as	my	stats-monkey,	but	how	many	albums	
will	we	sell	if	we	spend	£100,000	on	advertising?’	In	the	absence	of	any	data	probably	the	best	answer	I	could	give	would	
be	 the	mean	number	of	album	sales	 (say,	200,000)	because	on	average	that’s	how	many	albums	we	expect	 to	sell.	
However,	what	if	he	the	asks	‘How	many	albums	will	we	sell	if	we	spend	£1	on	advertising?’	Again,	in	the	absence	of	
any	accurate	information,	my	best	guess	would	be	the	mean.	There	is	a	problem:	whatever	amount	of	money	is	spent	
on	advertising	I	always	predict	the	same	levels	of	sales.	As	such,	the	mean	is	a	fairly	useless	model	of	a	relationship	
between	two	variables.—but	it	is	the	simplest	model	available.		

Using	the	mean	as	a	model,	we	can	calculate	the	difference	between	the	observed	values,	and	the	values	predicted	by	
the	mean.	We	saw	in	lecture	1	that	we	square	all	of	these	differences	to	give	us	the	sum	of	squared	differences.	This	
sum	of	squared	differences	is	known	as	the	total	sum	of	squares	(denoted	SST)	because	it	is	the	total	amount	of	error	
present	when	the	most	basic	model	is	applied	to	the	data	(Figure	2).	Now,	if	we	fit	the	more	sophisticated	model	to	the	
data,	such	as	a	line	of	best	fit,	we	can	work	out	the	differences	between	this	new	model	and	the	observed	data.	Even	if	
an	optimal	model	is	fitted	to	the	data	there	is	still	some	inaccuracy,	which	is	represented	by	the	differences	between	
each	observed	data	point	and	the	value	predicted	by	the	regression	line.	These	differences	are	squared	before	they	are	
added	up	so	that	the	directions	of	the	differences	do	not	cancel	out.	The	result	is	known	as	the	sum	of	squared	residuals	
(SSR).	This	value	represents	the	degree	of	inaccuracy	when	the	best	model	is	fitted	to	the	data.	We	can	use	these	two	
values	to	calculate	how	much	better	the	regression	line	(the	line	of	best	fit)	is	than	just	using	the	mean	as	a	model	(i.e.	
how	much	better	is	the	best	possible	model	than	the	worst	model?).	This	improvement	in	prediction	is	the	difference	
between	SST	and	SSR.	This	difference	shows	us	the	reduction	in	the	inaccuracy	of	the	model	resulting	from	fitting	the	
regression	model	to	the	data.	This	improvement	is	the	model	sum	of	squares	(SSM).	

If	 the	value	of	SSM	 is	 large	then	the	regression	model	 is	very	different	 from	using	the	mean	to	predict	 the	outcome	
variable.	This	implies	that	the	regression	model	has	made	a	big	improvement	to	how	well	the	outcome	variable	can	be	
predicted.	 However,	 if	 SSM	 is	 small	 then	 using	 the	 regression	 model	 is	 little	 better	 than	 using	 the	 mean	 (i.e.	 the	
regression	model	is	no	better	than	taking	our	‘best	guess’).	A	useful	measure	arising	from	these	sums	of	squares	is	the	
proportion	of	improvement	due	to	the	model.	This	is	easily	calculated	by	dividing	the	sum	of	squares	for	the	model	by	
the	total	sum	of	squares.	The	resulting	value	is	called	R2	and	to	express	this	value	as	a	percentage	you	should	multiply	
it	by	100.	So,	R2	represents	the	amount	of	variance	in	the	outcome	explained	by	the	model	(SSM)	relative	to	how	much	
variation	there	was	to	explain	in	the	first	place	(SST).	
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𝑅𝑅> =
𝑆𝑆𝑆𝑆G
𝑆𝑆𝑆𝑆H 	

Eq.	7	

	 	

Figure	2:	Diagram	showing	from	where	the	regression	sums	of	squares	derive	

A	 second	 use	 of	 the	 sums	 of	 squares	 in	 assessing	 the	model	 is	 the	 F-test.	 This	 test	 is	 based	 upon	 the	 ratio	 of	 the	
improvement	due	to	the	model	(SSM)	and	the	difference	between	the	model	and	the	observed	data	(SSR).	Rather	than	
using	the	sums	of	squares,	it	uses	the	mean	sums	of	squares	(referred	to	as	the	mean	squares	or	MS).	The	result	is	the	
mean	squares	for	the	model	(MSM)	and	the	residual	mean	squares	(MSR)	—	see	Field	2013	for	more	detail.	At	this	stage	
it	isn’t	essential	that	you	understand	how	the	mean	squares	are	derived	(it	is	explained	in	Field,	2013).	However,	it	is	
important	that	you	understand	that	the	F-ratio	(Eq.	8)	is	a	measure	of	how	much	the	model	has	improved	the	prediction	
of	the	outcome	compared	to	the	level	of	inaccuracy	of	the	model.	If	a	model	is	good,	then	the	improvement	in	prediction	
due	to	the	model	(MSM)	to	be	large	and	the	difference	between	the	model	and	the	observed	data	(MSR)	to	be	small.	In	
short,	a	good	model	should	have	a	large	F-ratio.	

𝐹𝐹 =
𝑀𝑀𝑆𝑆G
𝑀𝑀𝑆𝑆K 	

Eq.	8	

	

SST uses the differences 
between the observed data 

and the mean value of Y

SSR uses the differences 
between the observed data 

and the regression line

SSM uses the differences 
between the mean value of Y 

and the regression line
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Assessing individual predictors 
The	value	of	b	represents	the	change	in	the	outcome	resulting	from	a	unit	change	in	the	predictor.	If	the	model	is	very	
bad	then	we	would	expect	the	change	in	the	outcome	to	be	zero.	A	regression	coefficient	of	0	means:	(1)	a	unit	change	
in	the	predictor	variable	results	in	no	change	in	the	predicted	value	of	the	outcome	(the	predicted	value	of	the	outcome	
does	not	change	at	all).	Logically	 if	a	variable	significantly	predicts	an	outcome,	then	it	should	have	a	b-value	that	is	
different	from	zero.	The	t-statistic	tests	the	null	hypothesis	that	the	value	of	b	is	0:	therefore,	if	it	is	significant	we	gain	
confidence	in	the	hypothesis	that	the	b-value	is	significantly	different	from	0	and	that	the	predictor	variable	contributes	
significantly	to	our	ability	to	estimate	values	of	the	outcome.	

Like	F,	 the	 t-statistic	 is	based	on	 the	 ratio	of	explained	variance	against	unexplained	variance	or	error.	What	we’re	
interested	in	here	is	not	so	much	variance	but	whether	the	b	is	big	compared	to	the	amount	of	error	in	that	estimate.	
To	estimate	how	much	error	we	could	expect	 to	 find	 in	b	we	use	 the	 standard	error	because	 it	 tells	us	about	how	
different	b-values	would	be	across	different	samples.	Eq.	9	shows	how	the	t-test	is	calculated:	The	bexpected	is	the	value	
of	b	that	we	would	expect	to	obtain	if	the	null	hypothesis	were	true	(i.e.,	zero)	and	so	this	value	can	be	replaced	by	0.	
The	equation	simplifies	to	become	the	observed	value	of	b	divided	by	the	standard	error	with	which	it	is	associated:	

𝑡𝑡 =
𝑏𝑏MNOPQRPS − 𝑏𝑏PUVPWXPS

𝑆𝑆𝑆𝑆Z
=
𝑏𝑏MNOPQRPS
𝑆𝑆𝑆𝑆Z 	 Eq.	9	

The	values	of	t	have	a	special	distribution	that	differs	according	to	the	degrees	of	freedom	for	the	test.	In	this	context,	
the	 degrees	 of	 freedom	 are	N−p−1,	where	N	 is	 the	 total	 sample	 size	 and	p	 is	 the	 number	 of	 predictors.	 In	 simple	
regression	when	we	have	only	one	predictor,	this	reduces	down	to	N−2.	SPSS	provides	the	exact	probability	that	the	
observed	value	(or	a	 larger	one)	of	t	would	occur	 if	the	value	of	b	was,	 in	fact,	0.	As	a	general	rule,	 if	 this	observed	
significance	is	less	than	.05,	then	scientists	assume	that	b	is	significantly	different	from	0;	put	another	way,	the	predictor	
makes	a	significant	contribution	to	predicting	the	outcome.	

Generalization and Bootstrapping 
Remember	from	your	lecture	on	bias	that	linear	models	assume:	

• Linearity	and	additivity:	the	relationship	you’re	trying	to	model	is,	in	fact,	linear	and	with	several	predictors,	
they	combine	additively.	

• Normality:	For	b	estimates	to	be	optimal	the	residuals	should	be	normally	distributed.	For	CIs	and	confidence	
intervals	to	be	accurate,	the	sampling	distribution	of	bs	should	be	normal.	

• Homoscedasticity:	necessary	for	b	estimates	to	be	optimal	and	significance	tests	and	CIs	of	the	parameters	to	
be	accurate.	

If	these	assumptions	are	met	then	we	can	trust	the	estimates	of	our	bs,	which	means	that	we	can	generalize	our	model	
(i.e.	assume	that	it	works	in	samples	other	than	the	one	from	which	we	collected	data).	If	we	have	concerns	about	these	
assumptions	 we	 can	 use	 bootstrapping	 to	 compute	 robust	 estimates	 of	 bs	 and	 their	 confidence	 intervals.	 Lack	 of	
normality	prevents	us	from	knowing	the	shape	of	the	sampling	distribution	unless	we	have	big	samples.	Bootstrapping	
Efron	&	Tibshirani,	1993)	gets	around	this	problem	by	estimating	the	properties	of	the	sampling	distribution	from	the	
sample	 data.	 In	 effect,	 the	 sample	 data	 are	 treated	 as	 a	 population	 from	which	 smaller	 samples	 (called	 bootstrap	
samples)	are	taken	(putting	each	score	back	before	a	new	one	is	drawn	from	the	sample).	The	parameter	of	interest	
(e.g.,	the	regression	parameter)	is	calculated	in	each	bootstrap	sample.	This	process	is	repeated	perhaps	2000	times.	
The	end	result	is	that	we	have	2000	parameter	estimates,	one	from	each	bootstrap	sample.	There	are	two	things	we	
can	do	with	these	estimates:	the	first	is	to	order	them	and	work	out	the	limits	within	which	95%	of	them	fall.	We	can	
use	these	values	as	an	estimate	of	the	limits	of	the	95%	confidence	interval	of	the	parameter.	The	result	is	known	as	a	
percentile	bootstrap	confidence	interval	(because	it	 is	based	on	the	values	between	which	95%	of	bootstrap	sample	
estimates	fall).	The	second	thing	we	can	do	is	to	calculate	the	standard	deviation	of	the	parameter	estimates	from	the	
bootstrap	samples	and	use	it	as	the	standard	error	of	parameter	estimates.	An	important	point	to	remember	is	that	
because	bootstrapping	is	based	on	taking	random	samples	from	the	data	you’ve	collected	the	estimates	you	get	will	be	
slightly	 different	 every	 time.	 This	 is	 nothing	 to	 worry	 about.	 For	 a	 fairly	 gentle	 introduction	 to	 the	 concept	 of	
bootstrapping	see	Wright,	London	and	Field	(2011).	
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Fitting a linear model 
Figure	3	shows	the	general	process	of	conducting	regression	analysis.	First,	we	should	produce	scatterplots	to	get	some	
idea	of	whether	the	assumption	of	linearity	is	met,	and	also	to	look	for	any	outliers	or	obvious	unusual	cases.	At	this	
stage	we	might	transform	the	data	to	correct	problems.	Having	done	this	initial	screen	for	problems	we	fit	a	model	and	
save	the	various	diagnostic	statistics	that	we	will	discuss	next	week.	 If	we	want	to	generalize	our	model	beyond	the	
sample,	or	we	are	interested	in	interpreting	significance	tests	and	confidence	intervals	then	we	examine	these	residuals	
to	check	for	homoscedasticity,	normality,	independence	and	linearity.	If	we	find	problems	then	we	take	corrective	action	
and	re-estimate	the	model.	Also,	it’s	probably	wise	to	use	bootstrapped	confidence	intervals	when	we	first	estimate	the	
model	because	then	we	can	basically	forget	about	things	like	normality.	

	

Figure	3:	The	process	of	fitting	a	regression	model	

Regression using SPSS 
There	are	some	data	from	Field	2013	in	the	file	Album	Sales.sav.	This	data	file	has	200	rows,	each	one	representing	a	
different	album.	There	are	also	two	columns,	one	representing	the	sales	of	each	album	in	the	week	after	release	and	
the	other	representing	the	amount	(in	pounds)	spent	promoting	the	album	before	release.	This	is	the	format	for	entering	
regression	data:	the	outcome	variable	and	any	predictors	should	be	entered	in	different	columns,	and	each	row	should	
represent	independent	values	of	those	variables.		

The	pattern	of	the	data	is	shown	in	Figure	4	and	it	should	be	clear	that	a	positive	relationship	exists:	so,	the	more	money	
spent	advertising	the	album,	the	more	it	is	likely	to	sell.	Of	course	there	are	some	albums	that	sell	well	regardless	of	
advertising	(top	left	of	scatterplot),	but	there	are	none	that	sell	badly	when	advertising	levels	are	high	(bottom	right	of	
scatterplot).	The	scatterplot	also	shows	 the	 line	of	best	 fit	 for	 these	data:	bearing	 in	mind	 that	 the	mean	would	be	
represented	by	a	flat	line	at	around	the	200,000	sales	mark,	the	regression	line	is	noticeable	different.	

Check residuals

Assumptions met and 
no bias

No normality

Graphs: zpred vs. zresid

Re-run analysis: 
Bootstrap CIs, transform 

data

Model can be generalized

Linearity

Normality
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Run initial 
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Homoscedasticity

Graphs: histogram
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Figure	4:	Scatterplot	showing	the	relationship	between	album	sales	and	the	amount	spent	promoting	the	album.	 	

Running a basic Analysis 
To	find	out	the	parameters	that	describe	the	regression	line,	and	to	see	whether	this	line	is	a	useful	model,	we	need	to	
run	 a	 regression	 analysis.	 To	 do	 the	 analysis	 you	 need	 to	 access	 the	 main	 dialog	 box	 by	 selecting	

	Figure	4	shows	the	resulting	dialog	box.	There	is	a	space	labelled	Dependent	in	which	
you	should	place	the	outcome	variable	(in	this	example	sales).	So,	select	sales	from	the	list	on	the	left-hand	side,	and	
transfer	it	by	dragging	it	or	clicking	on	 .	There	is	another	space	labelled	Independent(s)	in	which	any	predictor	variable	
should	be	placed.	In	simple	regression	we	use	only	one	predictor	(in	this	example,	adverts)	and	so	you	should	select	
adverts	from	the	list	and	click	on	 	to	transfer	it	to	the	list	of	predictors.	There	are	a	variety	of	options	available,	but	
these	will	be	explored	within	the	context	of	multiple	regression.			

	 		

Figure	5:	Main	dialog	box	for	regression	

If	we	are	worried	about	assumptions	then	we	can	get	bootstrapped	confidence	intervals	for	the	regression	coefficients	
by	clicking	 .	Select	 	to	activate	bootstrapping,	and	to	get	a	95%	confidence	interval	click	

.	Click	on	 	in	the	main	dialog	box	to	run	the	basic	analysis.	 		
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Figure	6:	Bootstrap	dialog	box	

Output from SPSS 

Overall Fit of the Model 

	
Output	1	

The	first	table	provided	by	SPSS	is	a	summary	of	the	model	that	gives	the	
value	of	R	and	R2	for	the	model.	For	these	data,	R	is	0.578	and	because	
there	is	only	one	predictor,	this	value	represents	the	simple	correlation	
between	advertising	and	album	sales	(you	can	confirm	this	by	running	a	
correlation).	 The	 value	 of	 R2	 is	 0.335,	 which	 tells	 us	 that	 advertising	
expenditure	can	account	for	33.5%	of	the	variation	in	album	sales.	There	
might	be	many	 factors	 that	 can	explain	 this	 variation,	 but	our	model,	
which	 includes	only	 advertising	expenditure	explains	33%:	66%	of	 the	
variation	in	album	sales	is	unexplained.	Therefore,	there	must	be	other	
variables	that	have	an	influence	also	

The	next	part	of	the	output	reports	an	analysis	of	variance	(ANOVA—see	Field,	2013,	Chapter	11).	The	most	important	
part	of	the	table	is	the	F-ratio,	which	is	calculated	using	Eq.	8,	and	the	associated	significance	value.	For	these	data,	F	is	
99.59,	which	is	significant	at	p	<.001	(because	the	value	in	the	column	labelled	Sig.	is	less	than.001).	This	result	tells	us	
that	there	is	less	than	a	0.1%	chance	that	an	F-ratio	this	large	would	happen	if	there	were	no	effect.	Therefore,	we	can	
conclude	that	our	regression	model	results	in	significantly	better	prediction	of	album	sales	than	if	we	used	the	mean	
value	of	album	sales.	In	short,	the	regression	model	overall	predicts	album	sales	significantly	well.	

	

Output	2	

SSR

SSM

SST
MSR

MSM
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Model Parameters 

The	ANOVA	tells	us	whether	 the	model,	overall,	 results	 in	a	 significantly	good	degree	of	prediction	of	 the	outcome	
variable.	However,	the	ANOVA	doesn’t	tell	us	about	the	individual	contribution	of	variables	in	the	model	(although	in	
this	simple	case	there	is	only	one	variable	in	the	model	and	so	we	can	infer	that	this	variable	is	a	good	predictor).	The	
table	in	Output	3	provides	details	of	the	model	parameters	(the	beta	values)	and	the	significance	of	these	values.	We	
saw	in	Eq.	1	that	b0	was	the	Y	intercept	and	this	value	is	the	value	B	for	the	constant.	So,	from	the	table,	we	can	say	that	
b0	is	134.14,	and	this	can	be	interpreted	as	meaning	that	when	no	money	is	spent	on	advertising	(when	X	=	0),	the	model	
predicts	that	134,140	albums	will	be	sold	(remember	that	our	unit	of	measurement	was	thousands	of	albums).	We	can	
also	read	off	the	value	of	b1	from	the	table	and	this	value	represents	the	gradient	of	the	regression	line.	It	is	0.096.1	
Although	this	value	is	the	slope	of	the	regression	line,	it	is	more	useful	to	think	of	this	value	as	representing	the	change	
in	the	outcome	associated	with	a	unit	change	in	the	predictor.	Therefore,	if	our	predictor	variable	is	increased	by	1	unit	
(if	the	advertising	budget	is	increased	by	1),	then	our	model	predicts	that	0.096	extra	albums	will	be	sold.	Our	units	of	
measurement	were	thousands	of	pounds	and	thousands	of	albums	sold,	so	we	can	say	that	for	an	increase	in	advertising	
of	£1000	the	model	predicts	96	(0.096	´	1000	=	96)	extra	album	sales.	As	you	might	imagine,	this	investment	is	pretty	
bad	for	the	record	company:	they	invest	£1000	and	get	only	96	extra	sales!	Fortunately,	as	we	already	know,	advertising	
accounts	for	only	one-third	of	album	sales.	

	

Output	3	

We	saw	earlier	that,	in	general,	values	of	the	regression	coefficient	b	represent	the	change	in	the	outcome	resulting	
from	a	unit	change	in	the	predictor	and	that	if	a	predictor	is	having	a	significant	impact	on	our	ability	to	predict	the	
outcome	then	this	b	should	be	different	from	0	(and	big	relative	to	its	standard	error).	We	also	saw	that	the	t-test	tells	
us	whether	the	b-value	is	different	from	0.	SPSS	provides	the	exact	probability	that	the	observed	value	of	t	would	occur	
if	 the	value	of	b	 in	 the	population	were	zero.	 If	 this	observed	significance	 is	 less	 than	 .05,	 then	the	result	 reflects	a	
genuine	effect.	For	both	ts,	the	probabilities	are	.000	(zero	to	3	decimal	places)	and	so	we	can	say	that	the	probability	
of	these	t	values	(or	larger)	occurring	if	the	values	of	b	in	the	population	were	zero	is	less	than	.001.	Therefore,	the	bs	
are	significantly	different	from	0.	In	the	case	of	the	b	for	advertising	budget	this	result	means	that	the	advertising	budget	
makes	a	significant	contribution	(p	<	.001)	to	predicting	album	sales.	

The	bootstrap	confidence	interval	tells	us	that	the	population	value	of	b	for	advertising	budget	is	likely	to	fall	between	
.08	 and	 .11	 and	 because	 this	 interval	 doesn’t	 include	 zero	 we	 would	 conclude	 that	 there	 is	 a	 genuine	 positive	
relationship	between	advertising	budget	and	album	sales	in	the	population.	Also,	the	significance	associated	with	this	
confidence	interval	is	p	=	.001,	which	is	highly	significant.	Also,	note	that	the	bootstrap	process	involves	re-estimating	
the	standard	error	(it	changes	from	.01	in	the	original	table	to	a	bootstrap	estimate	of	.009).	This	is	a	very	small	change.	
For	the	constant,	 the	standard	error	 is	7.537	compared	to	the	bootstrap	estimate	of	8.214,	which	 is	a	difference	of	

																																																																				
1	Sometimes	small	values	are	reported	by	SPSS	as	things	like	9.612	E-02	and	many	students	find	this	notation	confusing.	
Well,	think	of	E-02	as	meaning	‘move	the	decimal	place	2	steps	to	the	left’,	so	9.612	E-02	becomes	0.09612.	
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0.677.	The	bootstrap	confidence	intervals	and	significance	values	are	useful	to	report	and	interpret	because	they	do	not	
rely	on	assumptions	of	normality	or	homoscedasticity.	

Using the Model  
So	far,	we	have	discovered	that	we	have	a	useful	model,	one	that	significantly	improves	our	ability	to	predict	album	
sales.	However,	the	next	stage	 is	often	to	use	that	model	to	make	some	predictions.	The	first	stage	 is	to	define	the	
model	by	replacing	the	b-values	in	Eq.	2	with	the	values	from	the	output.	In	addition,	we	can	replace	the	X	and	Y	with	
the	variable	names	so	that	the	model	becomes:	

album	sales! = 𝑏𝑏* + 𝑏𝑏+advertising	budget!	

= 134.14 + 0.096	×	advertising	budget! 	
Eq.	10	

It	is	now	possible	to	make	a	prediction	about	album	sales,	by	replacing	the	advertising	budget	with	a	value	of	interest.	
For	 example,	 imagine	 a	 recording	 company	 executive	 wanted	 to	 spend	 £100,000	 on	 advertising	 a	 new	 album.	
Remembering	that	our	units	are	already	in	thousands	of	pounds,	we	can	simply	replace	the	advertising	budget	with	100.	
He	would	discover	that	album	sales	should	be	around	144,000	for	the	first	week	of	sales:	

album	sales! = 134.14 + 0.096	×	advertising	budget! 	

= 134.14 + 0.096	×	100 	

= 143.74	

Eq.	11	

Regression with several predictors using SPSS 

	

SELF-TEST:	 Produce	 a	 matrix	 scatterplot	 of	 Sales,	 Adverts,	 Airplay	 and	 Attract	 including	 the	
regression	line.	

Main options 
The	executive	has	past	research	indicating	that	advertising	budget	is	a	significant	predictor	of	album	sales,	and	so	he	
should	include	this	variable	in	the	model	first.	His	new	variables	(airplay	and	attract)	should,	therefore,	be	entered	into	
the	model	after	advertising	budget.	This	method	is	hierarchical	(the	researcher	decides	in	which	order	
to	enter	variables	into	the	model	based	on	past	research).	To	do	a	hierarchical	regression	in	SPSS	we	
have	to	enter	the	variables	in	blocks	(each	block	representing	one	step	in	the	hierarchy).	To	get	to	the	
main	regression	dialog	box	select	 .	To	set	up	the	first	block	we	
do	exactly	what	we	did	before.	Select	the	outcome	variable	(album	sales)	and	drag	it	to	the	box	labelled	
Dependent	(or	click	on	 ).	We	also	need	to	specify	the	predictor	variable	for	the	first	block.	We’ve	
decided	that	advertising	budget	should	be	entered	into	the	model	first,	so	select	this	variable	in	the	list	
and	drag	it	to	the	box	labelled	Independent(s)	(or	click	on	 ).	Underneath	the	Independent(s)	box,	there	is	a	drop-down	
menu	for	specifying	the	Method	of	regression.	You	can	select	a	different	method	of	variable	entry	for	each	block	by	
clicking	on	 ,	next	to	where	it	says	Method	(see	Figure	5).	The	default	option	is	forced	entry,	and	this	is	the	
option	we	want,	but	next	week	we’ll	look	at	other	approaches.	

Having	specified	the	first	block	in	the	hierarchy,	we	need	to	move	onto	to	the	second.	To	tell	the	computer	that	you	
want	to	specify	a	new	block	of	predictors	you	must	click	on	 .	This	process	clears	the	Independent(s)	box	so	that	
you	can	enter	the	new	predictors	(you	should	also	note	that	above	this	box	it	now	reads	Block	2	of	2	indicating	that	you	
are	in	the	second	block	of	the	two	that	you	have	so	far	specified).	We	decided	that	the	second	block	would	contain	both	
of	the	new	predictors	and	so	you	should	click	on	Airplay	and	Attract	(while	holding	down	Ctrl,	or	Cmd	if	you	use	a	Mac)	
in	the	variables	list	and	drag	them	to	the	Independent(s)	box	or	click	on	 .	The	dialog	box	should	now	look	like	Figure	
7.	To	move	between	blocks	use	the	 	and	 	buttons	(so	for	example,	to	move	back	to	block	1,	click	on	
).	We	can	get	bootstrapped	confidence	intervals	for	the	regression	coefficients	by	clicking	 	as	we	did	before.	
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Figure	7:	Main	dialog	box	for	block	2	of	the	multiple	regression	

Output from SPSS 

Overall Fit of the Model 

	
Output	4	

Note	that	there	are	two	models.	Model	1	refers	to	the	
first	 stage	 in	 the	 hierarchy	 when	 only	 advertising	
budget	is	used	as	a	predictor.	Model	2	refers	to	when	
all	three	predictors	are	used.	Under	this	table	SPSS	tells	
us	 what	 the	 dependent	 variable	 (outcome)	 was	 and	
what	the	predictors	were	 in	each	of	 the	two	models.	
The	 column	 labelled	 R	 contains	 the	 values	 of	 the	
multiple	correlation	coefficient	between	the	predictors	
and	 the	 outcome.	 When	 only	 advertising	 budget	 is	
used	 as	 a	 predictor,	 this	 is	 the	 simple	 correlation	
between	advertising	and	album	sales	 (0.578).	 In	 fact,	
all	 of	 the	 statistics	 for	model	 1	 are	 the	 same	 as	 the	
regression	model	earlier	(Output	1).		

The	next	 column	gives	us	a	value	of	R2,	which	we	already	know	 is	a	measure	of	how	much	of	 the	variability	 in	 the	
outcome	is	accounted	for	by	the	predictors.	For	the	first	model	its	value	is	.335,	which	means	that	advertising	budget	
accounts	for	33.5%	of	the	variation	in	album	sales.	However,	when	the	other	two	predictors	are	included	as	well	(model	
2),	this	value	increases	to	.665	or	66.5%	of	the	variance	in	album	sales.	Therefore,	if	advertising	accounts	for	33.5%,	we	
can	tell	that	attractiveness	and	radio	play	account	for	an	additional	33%.2	So,	the	inclusion	of	the	two	new	predictors	
has	explained	quite	a	large	amount	of	the	variation	in	album	sales	

Output	5	contains	an	ANOVA	that	tests	whether	the	model	is	significantly	better	at	predicting	the	outcome	than	using	
the	mean	as	a	‘best	guess’.	For	the	initial	model	the	F-ratio	is	99.59,	p	<	.001.	For	the	second	model	the	value	of	F	is	
129.498,	 which	 is	 also	 highly	 significant	 (p	 <	 .001).	 We	 can	 interpret	 these	 results	 as	 meaning	 that	 both	 models	
significantly	improved	our	ability	to	predict	the	outcome	variable	compared	to	not	fitting	the	model.	

																																																																				
2	That	is,	33%	=	66.5%	-	33.5%.	
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Output	5	

Model Parameters 

Remember	that	in	multiple	regression	the	model	takes	the	form	of	Eq.	6	and	in	that	equation	there	are	several	unknown	
parameters	(the	b-values).	The	first	part	of	Output	6	gives	us	estimates	for	these	b-values	and	these	values	indicate	the	
individual	contribution	of	each	predictor	to	the	model.	We	can	use	these	estimates	to	define	our	model:		

sales! = 𝑏𝑏* + 𝑏𝑏+advertising! + 𝑏𝑏>airplay! + 𝑏𝑏aattractiveness!	

= −26.61 + 0.08	advertising! + 3.37	airplay! + 11.09	attractiveness! 	
Eq.	12	

The	b-values	tell	us	about	the	relationship	between	album	sales	and	each	predictor.	All	three	predictors	have	positive	
b-values	indicating	positive	relationships.	So,	as	advertising	budget	increases,	album	sales	increase;	as	plays	on	the	radio	
increase,	so	do	album	sales;	and	finally	more	attractive	bands	will	sell	more	albums.	The	b-values	tell	us	more	than	this,	
though.	They	tell	us	to	what	degree	each	predictor	affects	the	outcome	 if	the	effects	of	all	other	predictors	are	held	
constant:	

• Advertising	budget	 (b	=	0.085):	as	advertising	budget	 increases	by	one	unit,	album	sales	 increase	by	0.085	
units.	

• Airplay	(b	=	3.367):	as	the	number	of	plays	on	radio	in	the	week	before	release	increases	by	one,	album	sales	
increase	by	3.367	units.	

• Attractiveness	 (b	=	11.086):	a	band	rated	one	unit	higher	on	the	attractiveness	scale	can	expect	additional	
album	sales	of	11.086	units.	

For	this	model,	the	advertising	budget,	t(196)	=	12.26,	p	<	.001,	the	amount	of	radio	play	prior	to	release,	t(196)	=	12.12,	
p	<	.001	and	attractiveness	of	the	band,	t(196)	=	4.55,	p	<	.001,	are	all	significant	predictors	of	album	sales.3	Remember	
that	these	significance	tests	are	accurate	only	if	the	assumptions	discussed	in	your	lecture	are	met.	

If	 these	 assumptions	 aren’t	met,	 or	 you	want	 to	 ignore	 them,	 you	 could	 look	 at	 the	 table	 of	 bootstrap	 confidence	
intervals	for	each	predictor	and	their	significance	value4.	These	tell	us	that	advertising,	b	=	0.09	[0.07,	0.10],	p	=	.001,	
airplay,	b	=	3.37	[2.74,	4.02],	p	=	.001,	and	attractiveness	of	the	band,	b	=	11.09	[6.46,	15.01],	p	=	.001,	all	significantly	
predict	album	sales.	The	confidence	intervals	are	constructed	such	that	in	95%	of	samples	the	boundaries	contain	the	
population	value	of	b.	Therefore,	it’s	likely	that	the	confidence	interval	we	have	constructed	for	this	sample	will	contain	
the	true	value	of	b	 in	the	population.	Therefore,	we	can	use	the	confidence	 intervals	to	tell	us	the	 likely	size	of	the	
parameter	in	the	population	(i.e.,	the	true	value).	If	the	confidence	interval	contains	zero	then	this	means	that	the	true	
value	might	be	zero	(i.e.,	no	effect	at	all)	or	opposite	to	what	we	observed	in	the	sample	(e.g.,	a	negative	b	instead	of	

																																																																				
3	For	all	of	these	predictors	I	wrote	t(196).	The	number	in	brackets	is	the	degrees	of	freedom.	In	regression	the	degrees	
of	freedom	are	N-p-1,	where	N	is	the	total	sample	size	(in	this	case	200)	and	p	is	the	number	of	predictors	(in	this	case	
3).	For	these	data	we	get	200–3–1	=	196.	
4	Remember	that	because	of	how	bootstrapping	works	the	values	in	your	output	will	be	slightly	different	to	mine,	and	
different	if	you	re-run	the	analysis.	
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the	positive	one	that	we	observed).	Therefore,	because	zero	does	not	fall	within	the	boundaries	of	any	of	our	bootstrap	
confidence	intervals,	we	can	conclude	very	confidently	that	the	population	values	of	b	are	positive—	in	other	words,	all	
of	the	predictor	variables	are	genuine	predictors	of	album	sales.	

	

Output	6	

Tasks 
Task 1 
Lacourse	et	al.	(2001)	conducted	a	study	to	see	whether	suicide	risk	was	related	to	listening	to	heavy	metal	music.	They	
devised	a	scale	to	measure	preference	for	bands	 falling	 into	the	category	of	heavy	metal.	This	scale	 included	heavy	
metal	bands	(Black	Sabbath,	Iron	Maiden),	speed	metal	bands	(Slayer,	Metallica),	death/black	metal	bands	(Obituary,	
Burzum)	and	gothic	bands	(Marilyn	Manson,	Sistsers	of	Mercy).	They	then	used	this	(and	other	variables)	as	predictors	
of	suicide	risk	based	on	a	scale	measuring	suicidal	ideation	etc.	devised	by	Tousignant	et	al.,	(1988).	

• Lacourse,	E.,	Claes,	M.,	&	Villeneuve,	M.	(2001).	Heavy	Metal	Music	and	Adolescent	Suicidal	Risk.	Journal	of	
Youth	and	Adolescence,	30	(3),	321-332.		[Available	through	the	Sussex	Electronic	Library].	

Let’s	imagine	we	replicated	this	study.	The	data	file	HMSuicide.sav	(on	the	course	website)	contains	the	data	from	such	
a	replication.	There	are	two	variables	representing	scores	on	the	scales	described	above:	hm	(the	extent	to	which	the	
person	listens	to	heavy	metal	music)	and	suicide	(the	extent	to	which	someone	has	suicidal	ideation	and	so	on).		Using	
these	data	carry	out	a	regression	analysis	to	see	whether	listening	to	heavy	metal	predicts	suicide	risk.	

	

How	much	variance	does	the	final	model	explain?	

Your	
Answers:	 	
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	 Does	listening	to	heavy	metal	significantly	predict	suicide	risk	(quote	relevant	statistics)?	

Your	
Answers:	 	

	 What	is	the	nature	of	the	relationship	between	listening	to	heavy	metal	and	suicide	risk?	
(sketch	a	scatterplot	if	it	helps	you	to	explain).	

Your	
Answers:	 	

	 Write	out	the	regression	equation	for	the	model	

Your	
Answers:	 	

	 As	listening	to	heavy	metal	increases	by	1	unit,	how	much	does	suicide	risk	increase?	

Your	
Answers:	 	

Task 2 
One	of	my	favourite	activities,	especially	when	trying	to	do	brain-melting	things	like	writing	statistics	books,	is	to	drink	
tea.	 I	am	English	after	all.	Fortunately,	 tea	 improves	your	cognitive	function,	well,	 in	old	Chinese	people	at	any	rate	
(Feng,	Gwee,	Kua,	&	Ng,	2010).	I	may	not	be	Chinese	and	I’m	not	that	old,	but	I	nevertheless	enjoy	the	idea	that	tea	
might	help	me	think.	There	are	some	data	(Tea	Makes	You	Brainy	716.sav)	based	on	Feng	et	al.’s	study	that	measured	
the	number	of	cups	of	tea	drunk	and	cognitive	functioning.	Use	regression	to	construct	a	model	that	predicts	cognitive	
functioning	 from	 tea	 drinking,	 what	 would	 cognitive	 functioning	 be	 if	 someone	 drank	 10	 cups	 of	 tea?	 Is	 there	 a	
significant	effect?	
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Task 3 
In	the	lecture	we	saw	an	example	of	outliers	vs.	influential	cases	in	which	we	predicted	mortality	rates	form	the	number	
of	pubs	in	the	area.	Run	a	regression	analysis	for	the	pubs.sav	data	predicting	mortality	from	the	number	of	pubs.	Try	
repeating	the	analysis	but	bootstrapping	the	confidence	intervals.	

Task 4 
The	Honesty	Lab	 (www.honestylab.com)	 looked	at	how	people	evaluated	dishonest	acts.	Participants	evaluated	 the	
dishonesty	of	acts	based	on	watching	videos	of	people	confessing	to	those	acts.	The	media	would	have	us	believe	that	
the	more	 likeable	 the	perpetrator	was,	 the	more	positively	 their	dishonest	acts	were	viewed.	 Imagine	we	 took	100	
people	and	gave	them	a	random	dishonest	act,	described	by	the	perpetrator.	We	asked	them	to	evaluate	the	honesty	
of	the	act	(0	=	appalling	behaviour	to	10	=	it’s	Ok	really)	and	how	much	they	liked	the	person	(0	=	not	at	all,	10	=	a	lot).	
I’ve	fabricated	some	data	(HonestyLab.sav)	relating	to	people’s	ratings	of	dishonest	acts	and	the	likeableness	of	the	
perpetrator.	 Run	 a	 regression	 using	 bootstrapping	 to	 predict	 ratings	 of	 dishonesty	 from	 the	 likeableness	 of	 the	
perpetrator.	
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