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Structural Equation Modelling (SEM) 

Aims and Objectives 

By the end of this seminar you should: 

• Have a working knowledge of the principles behind causality. 

• Understand the basic steps to building a Model of the phenomenon of interest. 

• Be able to construct/Interpret path diagrams. 

• Understand the basic principles of how models are tested using SEM. 

Historical Background: Cause and Effect 

Philosophers have had a great deal to say about the conditions necessary to infer causality.  Early 
theories such as Hume’s stressed the importance of observed temporal regularities. Cause and effect 
should occur close together in time, cause should occur before an effect is observed, and the cause 
should never occur without the presence of the effect. In short, cause is inferred through 
corroboration. However, the problem with this is that we know (from statistics) that covariation 
between variables is insufficient to infer causality (see Field, 2000, Chapter 3) for two reasons: (a) the 
Third Variable problem, and (b) inferring direction of causality. As an example, we might well observe a 
strong correlation between having dreadlocks and supporting environmental issues. However, it is 
unlikely that having dreadlocks causes an interest in the environment. There is, presumably, an 
external factor (or factors) that causes both. 

John Stuart Mill (1865) described three conditions necessary to infer cause: 

•Cause has to precede effect 

•Cause and effect must be related 

•All other explanations of the cause-effect relationship must be ruled out. 

In many senses Mill owes a huge debt to Hume in that his first two conditions mirror those of Hume 
(correlation between cause and effect and temporal precedence). Mill’s main contribution was to add 
the third condition, which suggests that the effects of a ‘third variable’ might be ruled-out. 

To verify the third criterion, Mill proposed the method of agreement which states that an effect is 
present when the cause is present; the method of difference which states that when the cause is 
absent the effect will be absent also and; the method of concomitant variation which states that 
when the above relationships are observed, causal inference will be made stronger because most other 
interpretations of the cause-effect relationship will have been ruled out. 

Example:�

If we wanted to say that me talking about causality causes boredom, we would have to satisfy the 
following conditions: 

(1) I talk about causality before boredom occurs. 

(2) Whenever I talk about causality, boredom occurs shortly afterwards. 

(3) The correlation between boredom and my talking about causality must be strong (e.g. 4 out of 4 
occasions when I talk about causality boredom is observed). 
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(4) When cause is absent effect is absent: when I don’t talk about causality no boredom is observed. 

(5) The manipulation of cause leads to an associated change in effect. So, if we manipulated 
whether someone is listening to me talking about causality or to my cat is mewing, the effect elicited 
should change according to the manipulation. 

This final manipulation serves to rule out external variables that might affect the cause-effect 
relationship. 

Historically, Psychology has two traditions: (a) experimental (variables are manipulated systematically 
to infer causality), and (b) situations are observed and variables correlated (see Field, 2000, Chapter 7; 
Cronbach, 1957). The first approach allows inferences about causality because possible causes are 
being compared systematically (i.e. a situation in which cause is observed is compared against a 
situation in which cause is absent). In the later approach no such manipulation is made, therefore cause 
cannot be inferred. For example, we can observe that night always follows day, but this doesn’t 
necessarily mean that day causes night (Hume). 

So, in situations in which cause cannot be manipulated we cannot make causal attributions about our 
variables. Statistically speaking, this means that when we analyze data from non-experimental 
situations we cannot conclude anything about cause an effect. Structural Equation Modeling (SEM) is an 
attempt to provide a flexible framework within which causal models can be built. 

A Simple SEM 

SEM is an attempt to model causal relations between variables by including all variables that are known 
to have some involvement in the process of interest. As a simple example, we could test the effect of a 
drug on some psychological disorder (e.g. obsessive compulsive disorder, OCD). Obsessive checking 
behaviour sometimes characterizes this disorder. So, we could take a baseline of checking behaviour, 
administer the drug and then re-measure checking to ascertain the reduction in this behaviour. We 
might find a pretty strong relation (correlation) between drug dose and reduction in checking across 
patients. However, there are several problems. First, this is a non-directional relationship because 
although drug dose could cause the reduction in checking behaviour, the drug dose could be caused by 
the behaviour (because higher doses are likely to be given to the more severe cases). Second, drug 
dose might not have a direct effect on behaviour; instead, the drug might inhibit some cognitive 
process (such as worrying that a task hasn’t been done) that in turn prevents behaviour. So, although 
the effect might be causal it is part of a chain of events.  Finally, the drug might have no effect and both 
drug dose and behaviour are moderated by a third variable. For example, the trait of ‘restraint’ might 
(a) reduce the number of times that a obsessive thoughts lead to an actually behaviour, and (b) affect 
the amount of symptoms reported to the psychiatrist (and hence affects the amount of drug 
prescribed. 

This example should hopefully illustrate several points about building a causal pathway model about 
the effect of a drug on behaviour. 

1. Third Variables: In non-experimental research, all variables that may cause a spurious 
relationship between the hypothesized ‘cause and effect’ must be collected and included in the 
data. In this example, ‘restraint’ might cause a spurious relationship between the drug and 
checking behaviour. Therefore, we need to collect data about patient’s levels of cognitive 
restraint and include this variable in the model. This is similar to what we do with partial 
correlations (see Field, 2000, Chapter3). We collect information about possible ‘third 
variables’ and include them in the model.  

2. Disturbance Terms: There may be variables that have an influence over either the cause of 
effect variables, but not both. For example, ‘worry’ (as a trait) may affect checking behaviour 
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but will not affect the dose of drug. Similarly, the psychiatrist prescribing the dose is likely to 
directly affect the dose (because doctors will vary in their preferred dose for a given level of 
symptoms) but not the outcome (the checking behaviour). These variables need not be 
included in the model because they affect only the cause or effect, but not both. These are 
known as disturbance terms and are sometimes notated by the letter ζ i for the ith variable. 

Model Specification 

The first step in SEM is to specify a model. A model is simply a statement (or set of statements) about 
the relations between variables. Although you may not realise it you will have already specified many 
models during your statistics course. For example, a correlation implies a non-directional single 
relation between two variables, whereas ANOVA and Regression imply directional relations between 
variables (however, neither technique can statistically test the directionality of these relations). More 
complex models (in ANOVA for example) involve the use of planned comparisons to specify particular 
relations between levels of a variable. In all of these techniques, an implicit model underlies the 
analysis. In SEM, the model is much more central to the process, so rather than relying on a fixed 
framework based on an implicit model (such as Regression), in SEM we specify a model first, and then 
use SEM to test the model specified. 

Specification involves several processes. First parameters need to be specified. Parameters are a set of 
values (constants) that indicate the nature of the relation between variables. So, these are similar to 
correlation coefficients, or factor loadings in which the magnitude and direction of the parameter 
indicate something about the strength and direction of the relationship. There are two types of 
parameter: 

• Fixed Parameters: These are parameters not estimated from the data collected. Typically, 
their value is fixed at zero. These parameters indicate no relation between variables. 

• Free Parameters: These are parameters that are estimated from the data collected and are 
believed, by the investigator, to be different from zero. The parameters indicate the presence 
of a relationship between variables. 

Variables: There are two types of variables that are used in SEM. The first type is measured variables, 
which are variables that can be directly measured in some way. So, these variables consist of data that 
have actually been collected that map directly to the construct of interest (we could measure heart 
rate directly though a pulse monitor and the data collected maps directly onto the variable of interest). 
A second type of variable is a latent variable, which is a variable that cannot be measured directly but 
is implied by the covariances between two or more indicator variables. A latent variable is, therefore, 
just another name for a factor (in factor analysis) or component (in principal components). So, it is just 
a construct that cannot be measured directly (e.g. depression) but can be accessed through measuring 
other related variables (such as questions on the BDI). Latent variables are free of the uniqueness and 
measurement error associated with the indicators. Within a model, measured variables can either be 
included as indicators of a latent variable, or as stand-alone variables. 

Model Components: Within a model there are two components: the measurement model and the 
structural model. The measurement model is basically the part of the general model in which latent 
variables are prescribed. Therefore, we determine which measured variables are indicators of a latent 
variable (or factor). The structural model is the part of the model in which we define the relationship 
between latent variables and other measured variables that are not indicators of some other latent 
variable. These two parts of the model are combined to make a whole model that comprehensively 
describes the relationships between variables that are free of measurement error (i.e. latent variables). 
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Types of Relations between Variables: So far we have learnt about the different types of variables we 
can use in SEM, and the basic types of models that we can use. The next important feature is how we 
specify relations between types of variables. There are basically three types of relations that can be 
specified, two of which you should have come across during basic statistics courses. 

1. Association: This is a nondirectional relation between variables. This is what is measured by 
the correlation coefficient with which you should not be familiar. The parameters representing 
these effects are simply the covariances between variables (or the correlation coefficient if 
variables are standardized). 

2. Direct Effect: This is a directional relation between two variables. You have come across this 
sort of relation in ANOVA and regression in which one variable predicts another. Just like 
multiple regression and factorial ANOVA it is possible to have a dependent variable related to 
several independent variables, and as in MANOVA and discriminant analysis it is possible to 
have one independent variable related to several dependent variables. The parameters 
representing these effects are values of the regression coefficients (i.e. weights in the 
regression equation (see Field, 2000, Chapter4).  

3. Indirect Effect: This is an indirect relation between variables and stems from the possibility that 
a variable can be both an independent and a dependent variable within SEM. In simple terms, a 
given variable can be the cause of some change in another variable whilst itself is influenced by 
some different variable. As a simple example, if we know that ‘practice makes perfect’ (i.e. 
practise leads to a perfect performance) and we know that the trait ‘dedication’ (a latent 
variable) leads to more practise, then we know that dedication must have an indirect effect of 
perfection. In this example, practise is both an independent variable (because variation in 
practise leads to variation in perfect performance) and a dependent variable (variation in 
practise is affected by variation in dedication). 

If the direct and indirect effects of an independent variable are summed, we gain the total effect of that 
variable. Variables that receive a directional influence from some other variable in the system are 
known as endogenous variables. These variables may also exert their own directional influence on 
other variables in the system. Variables that do not receive any directional influence from another 
variable are known as exogenous variables. Exogenous variables are usually associated with each other 
by nondirectional relations (although it is possible that they are not associated with any other variables 
in the model.  

The variance in endogenous variables is not completely explained by other variables in the system. 
Instead it is assumed that they are also influenced by an error term which consists of both random 
error and systematic variable that could, for example, represent the effect of some other variable that 
has not been measured or included in the present model. 

Additional Considerations 

In SEM we are hoping to model causal relationships between variables. To do this several conditions 
should be met. 

1. The cause and effect variables of interest must be included. 

2. All variables that affect both the cause and effect variables must be included. Therefore, any 
variable that could produce a spurious relation between the cause and effect variable must be 
considered within the model. 

3. The direct effects between variables must be included to indicate the causal relations of 
interest. 
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4. Relations between exogenous variables (non-direct effects) must be included. 

5. Disturbance terms should be included that represent any variables that need not be explicitly 
represented in the model. 

Schematic Representation of the Model: Path Diagrams 

So far we have learnt about the different types of variables that exist with a model and the types of 
relations that can exist between variables. A popular way to conceptualise a model is using a path 
diagram, which is a schematic drawing of the system (model) to be estimated. There are a few simple 
rules that assist in creating these diagrams: 

1. Circles or ellipses represent latent variables. 

2. Measured variables are represented by squares or rectangles. 

3. Directional effects are indicated using a single-headed arrow. 

4. Non-directional relations are indicated using a double-headed arrow. 

5. It is useful to represent the variance of a variable using a double-headed arrow that connects a 
variable to itself. 

6. Each arrow represents either a free or a fixed parameter. Fixed parameters should be 
indicated by their value, free parameters should be indicated using an appropriate letter or 
asterisks.  

So, looking back to our earlier example of modelling the effect of a drug on checking behaviour, we 
have identified several variables (from the literature) and have some idea of their impact on each other. 
We have a latent variable ‘restraint’, which cannot be directly measured and so is implied by measuring 
several other variables (for example, through a questionnaire). The resulting path diagram might look 
like this: 

Figure 1. 
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This diagram looks very complex even though it describes a relatively simply set of relations between 
variables. Primarily we are interested in the directional relation between drug dose and OCD. Drug 
dose can be directly measured and so is a measured variable (hence represented by a rectangle). We 
are interested in the effect that drug dose has on OCD. Now, in this model OCD is a latent variable in 
that it cannot be measured directly. To keep things simple we assume that we can measure OCD 
symptoms in terms of the frequency of obsessive thoughts and the frequency of obsession-related 
actions. As such, OCD is represented by a circle (because it is a latent variable) that is measured by 
two measured variables (thoughts and actions) both represented by rectangles. The latent variable 
representing OCD has directional arrows coming into it and so is said to be endogenous (i.e. 
dependent on other variables within the model). The final variable in the model is the trait of 
‘restraint’, which cannot be measured directly. This latent variable is represented by an ellipse and is 
measured through three measured variables (X1, X2, and X3). Restraint has a direct effect on both 
drug dose and OCD symptoms and so is connected to them both with a single arrow. Restraint does 
not have any directional arrows coming into it and so is said to be exogenous (i.e. doesn’t depend on 
other variables within the model). 

All of the measured variables (the squares) have associated error terms, but the latent variables do not 
(because they are assumed to be free from measurement error). However, both OCD and drug dose 
have disturbance terms attached to them. In the case of OCD this might be some kind of comorbidity 
factor such as worry or anxiety (that affect only OCD symptoms but not drug dose). For Drug dose 
this disturbance term might be the psychiatrist (because different psychiatrists will have different dose 
preferences for a given level of reported symptoms). 

The letters in the path diagram follow usual conventions, which are listed as follows (from Pedhazer & 
Schmelkin, 1991): 

• X ⇒  measured variable that indicates an exogenous latent variable. 

• δ ⇒  error term associated with X. 

• Y ⇒  measured variable that indicates an endogenous latent variable. 

• ε ⇒  error term associated with Y. 

• ξ ⇒  Exogenous latent variable. 

• η ⇒  Endogenous latent variable. 

• λ ⇒  Parameter of a directional relation between a latent variable and its indicators. 

• γ ⇒  Parameter of a directional relation between an endogenous and exogenous latent 
variable. 

• β ⇒  Parameter of a directional relation between two endogenous latent variables. 

• φ ⇒  Parameter of a non-directional relation between two latent variables (i.e. the covariance). 

• ζ ⇒  disturbance terms (or error in an endogenous latent variable). 

Initial Constraints on the Model 

Latent variables cannot be directly measured and so do not have a scale of measurement. Therefore, 
once the model has been created, it is necessary to fix certain parameters such that a scale of 
measurement is established for all of the latent variables in the model. This objective can be achieved 
in one of two ways: 
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1. Fix the variance of each latent variable: Fixing the variance of each latent variable has the effect 
of standardizing these variables. Typically, the variance of each latent variable is set at 1 so that 
any resulting parameter estimates can be interpreted like standardized regression coefficients 
(directional relations) or correlations (non-directional relations). If measured variables are also 
standardized (converted to Z-scores) then relations between latent variables and measured 
variables can also be interpreted in this way. 

2. Fix the value of one directional relation emitted by a given latent variable: In effect this means 
setting the value of the relation for each error term in the model at 1.0. So, we assign a value 
of 1 to the influence of each error term on its associated endogenous variable. Remember that 
error terms are typically exogenous and so their variances are estimated from the model. By 
fixing the value of their influence on an endogenous variable, it is possible to estimate this 
error variance, which in turn tells us how much variance in the endogenous variable cannot be 
explained other variables within the model. 

You’ll notice in the path diagram that the influence of all error terms has been set at 1. Also, although 
not explicitly drawn on the diagram, the variance of restraint would also be set at 1.  

The question remains of how to establish a scale for endogenous latent variables because the variance 
of these variables is not estimated by the model but implied by other variables within the model. One 
way is to fix the value of one influence of an endogenous latent variable on another variable at 1. 
Typically, we fix the value of the influence of the latent variable on one of its indicators. An alternative 
is to set the implied variance of these variables at 1.0, which has the desirable effect of simplifying the 
interpretation of the resulting parameter estimates. However, current software typically uses the 
former approach. 

Estimation 

Once the model is constructed estimates of the free parameters must be obtained from a set of 
observed data. The simplest way to get these estimates is to use simple regression techniques to 
estimate the values of relations between variables in the model. However, computer software 
packages use iterative procedures in which a series of solutions are generated and then compared to 
the actual data. Typically, the process involves generating a series of estimates of the free parameters 
that imply a covariance matrix like the observed one. The implied covariance matrix is the covariance 
matrix that would result if the values of the fixed parameters and current estimates of the free 
parameters were substitutive into the structural equations that make up the defined model. So, the 
program begins with a set of start values that are in some cases estimated from the data (LISREL) or 
can be a set of default values (EQS), and the implied covariance matrix is estimated and compared to 
the actual covariance matrix. The differences between these matrices are stored in a residual matrix. 
This matrix represents the error between the model and the real data. Estimates are changed to try to 
minimize the values in the residual matrix (so that values in the implied covariance matrix and actual 
covariance matrix converge). When the residuals cannot be reduced any further the iterations finish. 

The residuals are expressed as a single value that represents the degree of correspondence between 
the implied covariance matrix and the actual covariance matrix. This value is sometimes called the 
value of the fitting function and in a perfect model would be zero (indicating no difference between the 
implied and actual covariance matrices). 

Goodness-of-Fit 

As with even the simplest models, it is essential to establish how well the model fits the observed data 
(see Field, 2000, Chapter 1). The simplest gauge of how well the model fits the data would be to 
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inspect the residual matrix. A good model should have a high number of residuals close to zero 
(implying high correspondence between elements of the implied covariance matrix and the actual 
covariance matrix). The fitting function already provides a summary of the information in this matrix 
and so, in itself, is a measure of how well the model fits the data. Indeed, if the fitting function is 
multiplied by the sample size minus 1 we get statistic that is distributed with a χ2 distribution if the 
data are multivariate normal and the specified model is the correct one (the χ2 goodness-of-fit test). 

This later assumption is unlikely to be true which has led to considerable debate about the 
appropriateness of this test. Alternatives are the adjunct fit indexes pioneered by Bentler and Bonett 
(1980). These work on the principle of comparing the fitted model against a null model (and so are 
rather like hypothesis testing). The null model (sometimes called the independence model) used is one 
in which no relations between variable are specified and instead only variable variances are estimated. 
As such these statistics represent the improvement in fit of the actual model over a model in which all 
structural parameters are set at zero. Unlike the goodness-of-fit test, these indexes cannot be 
statistically tested and instead are treated as global indexes of model adequacy. Bentler and Bonett 
indexes vary between zero and 1 and an acceptable critical value is 0.9. Indexes less than this value 
reflect inadequate models. However, not all adjunct fit indexes follow these rules. 

The goodness-of-fit and adjunct fit indexes are in many ways opposite. The goodness-of-fit gives us an 
estimate of the error in the model and as such large values represent large amounts of error. 
Therefore, it is more accurate to call these measures badness-of-fit indexes because large values 
represent a bad fit. When we put these values to statistical tests we, are, therefore looking fir a null 
result (i.e. the χ2 is not significantly different from zero). The adjunct fit index represents the 
goodness-of-fit more literally in that high values demonstrate a better fit, however, they cannot be put 
to a statistical test. 

What happens if the Model is a Bad Fit? 

If the fit indicators suggest that the model is a bad fit it is possible to modify the model by either 
freeing some of the fixed parameters or by fixing some of the free parameters. This practise is 
extremely controversial. Although statisticians are not against the notion of model modification per 
se, there is worry over the way in which it is done. There are several options including the inspection 
of the residual matrix (for parameters that stand out as not fitting the data), or using statistical 
searches to find adjustments that will provide a better fit (rather like the DF Beta statistics in multiple 
regression — see Field, 2000, Section 4.2.4.2.). One example is the modification index used by LISREL 
and the Lagrange multiplier test provided by EQS. These statistics provide an estimate of the change in 
the χ2 goodness-of-fit statistic resulting from changing a given parameter from being fixed, to being 
free. However, none of these is a good substitute for substantive theory on which to base 
modifications, and modifications devoid of theoretical basis are ill advised. 

Interpretation of the Model 

Assuming the model is a good fit of the data the next step is interpretation. As mentioned earlier, if 
latent variables are standardizes appropriately then parameters can be interpreted like standardized 
regression coefficients (see Field, 2000, section 4.4.1.3.) when they are directional, and like correlation 
coefficients (see Field, 2000, section 3.2.3.1.) when they are non-directional. The ratio of each estimate 
to it’s standard error is also a z-score (so distributed with a z-distribution), therefore values of this 
ratio greater than 1.96 indicate an estimate that is reliably different from zero. 

The bigger issue is that of inferring causality from the structural pathways. A common misconception 
with SEM is that it provides statistical evidence of a causal link between variables. This is simply not 
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true. The estimates obtained are no different from those obtained from regression, ANOVA or a 
simple correlation. They tell us nothing about causality. The difference between SEM and these other 
techniques is in the flexibility with which causal models can be built. In ANOVA models, causality is 
inferred because one variable is systematically manipulated to see the effect on another. Likewise, in 
SEM, causality can be inferred, but only from the model originally constructed (and not from the 
statistical test of that model). The benefit of SEM over other approaches such as ANOVA or 
regression is simply the flexibility with which models can be built. 
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